Effective Pandas

Patterns for Data Manipulation

Effective Pandas

Patterns for Data Manipulation
Matt Harrison

Technical Editors: Lawrence Gray, Alexandre Batisse, Edward Krueger,

hairysun.com

COPYRIGHT © 2021

While every precaution has been taken in the preparation of this book, the publisher and author
assumes no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein

Contents

Contents

1 Introduction

1.1 Whothisbookisfor. e
1.2 DatainthisBook e
1.3 Hints, Tables,and Images
2 Installation
2.1 Anaconda e e e e e
22 Pip ..
23 Jupyter Overview
24 SUMMATryo e
25 EXerCiSes e e e e e e e
3 Data Structures
31 Summary
3.2 EXerciSes e e e e
4 Series Introduction
41 Theindex abstraction
42 ThepandasSeries oo ittt i
43 TheNaNvalue e
44 Optional Integer SupportforNaN L oL
45 SimilartoNumPy
46 Categorical Data.
47 Summaryo e
4.8 EXeICISES v v i i e e e e e
5 Series Deep Dive
51 LoadingtheData
5.2 Series Attributes e e
53 Summary
5.4 EXEICISeS . . . o v v o e e e
6 Operators (& Dunder Methods)
6.1 Introduction e e
6.2 Dunder Methods e
6.3 Index Alignment
6.4 Broadcasting
6.5 Tteration e e e e e e e e e e

Contents

10

Vi

6.6 OperatorMethods.
6.7 Chaining
6.8 Summary
6.9 EXErcises e e e e e e
Aggregate Methods

71 Aggregations
7.2 Count and Mean of an Attribute
7.3 .aggand AggregationStrings L L L oo
74 SUMMAary e e
7.5 EXErcises e e e e e

Conversion Methods

8.1 AutomaticConversion
82 MemoryUsage
8.3 String and Category Types
8.4 Ordered Categories
8.5 ConvertingtoOther Types
8.6 Summary
8.7 Exercises e

Manipulation Methods

9.1 .applyand .where e e e
9.2 IfElsewithPandas
93 MissingData.
94 FillingInMissingData L o
9.5 InterpolatingData.
9.6 ClippingData
9.7 SortingValues
9.8 SortingtheIndex
9.9 Dropping Duplicates
9.10 RankingData
9.11 ReplacingData
912 BinningData
913 Summary
9.14 EXEICISES . . . v v v v i i i e e

Indexing Operations

10.1 Prepping the Data and Renaming theIndex
10.2 ResettingtheIndex
10.3 The .loc Attribute L
10.4 The .iloc Attribute
105 Headsand Tails
10.6 Sampling
10.7 Filtering Index Values
10.8 Reindexing
109 Summary
10.10Exercises

Contents

11

12

13

14

String Manipulation

11.1 Stringsand Objects
11.2 Categorical Strings L
11.3 The .str Accessor i it i
114 Searching
115 Splitting
11.6 Optimizing .apply withCython
11.7 Replacing Text e
11.8 Summary e
11.9 Exercises

Date and Time Manipulation

12.1 Date Theory
122 Loading UTC TimeData
12.3 Loading Local TimeData
12.4 Converting Local timeto UTC,
12.5 Convertingto Epochs
12.6 ManipulatingDates
127 Summary
12.8 Exercises

Dates in the Index

13.1 Finding MissingData o o
13.2 FillingInMissingData L L
13.3 Interpolation
13.4 Dropping Missing Values
13,5 ShiftingData
13.6 Rolling Average e
13.7 Resampling e
13.8 Gathering Aggregate Values (But Keeping Index)
13.9 Groupby Operations
13.10Cumulative Operations
13.11Summary
1312EXercises e

Plotting with a Series

14.1 PlottinginJupyter. L
14.2 The .plot Attribute e
14.3 Histograms. e
14.4 Box Plot. e
14.5 Kernel Density EstimationPlot
146 LinePlots e
14.7 Line Plots with Multiple Aggregations
148 BarPlots
14.9 PiePlots e
14.10Styling
14.11Summary e
14.12EXercises e

vii

Contents

15 Categorical Manipulation
15.1 Categorical Data
152 Frequency Counts
15.3 Benefits of Categories
15.4 Conversion to Ordinal Categories
155 The .cat ACCeSSOT o vt
15.6 Category Gotchas
15.7 Generalization e
15.8 Summary
15.9 Exercises

16 Dataframes
16.1 Database and Spreadsheet Analogues
16.2 A Simple Python Version
163 Dataframes L
164 Construction
16.5 Dataframe Axis
16.6 Summary
16.7 Exercises

17 Similarities with Series and DataFrame
171 GettingtheData
172 ViewingData
173 Summary
174 EXEICISES v v i o i e e e e e e e e e e e

18 Math Methods in DataFrames
18.1 Index Alignment
18.2 Duplicate Index Entries L o o
183 Summary
18.4 EXEICISES v v v i e e e e e e e e e e e

19 Looping and Aggregation
19.1 For Loops o o
19.2 Aggregations e
19.3 The .apply Method e
19.4 Summary
19.5 Exercises

20 Columns Types, .assign, and Memory Usage
20.1 Conversion Methods L
20.2 Memory Usage e
203 SUMMATY oo
204 EXerciseso

21 Creating and Updating Columns
21.1 LoadingtheData
212 More Column Cleanup e
213 SUMMATY oo

viii

FEEE FENEE FEEERE EEEEE EEEEE EEEEEEEE EEEREREREEEER

Contents

21.4 EXEICISES . . . v v v e e e e e e e e e e e e s

Dealing with Missing and Duplicated Data

22.1 MissingData
222 Duplicates e
223 SUMMATIY o v oo e e e e
224 EXerCises e

Sorting Columns and Indexes

23.1 Sorting Columns
23.2 Sorting Column Order
23.3 Setting and Sorting theIndex o L.
234 Summary Lo e e
23.5 EXercises

24.1 RenaminganIndex L
242 ResettingtheIndex
24.3 Dataframe Indexing, Filtering, & Querying
244 Indexing by Position L
245 Indexingby Name L e
24.6 Filtering with Functions& .1oc
247 .query VS .1OC e e e e e e e e e e e e e e
248 SUMMATIY oo e
249 EXercises

Plotting with Dataframes

25.1 LinesPlots e
252 BarPlots e 218
25.3 Scatter Plots
25.4 AreaPlots and Stacked Bar Plots o L
25.5 Column Distributions with KDEs, Histograms, and Boxplots
25,6 SUMMATIY o oot o e e e e e
25.7 BXercises

136
90
51
o1
193
93
95
195
197
97
Filtering and Indexing Operations 199
199
99
200
202
205
209
210

Reshaping Dataframes with Dummies

26.1 Dummy Columns
26.2 Undoing Dummy Columns,
263 SUMMATIY o v vt e e e e e e e e e
26.4 EXercises

Reshaping By Pivoting and Grouping

27.1 ABasicExample. e
27.2 Using a Custom Aggregation Function
27.3 Multiple Aggregations L
274 Per Column Aggregations
27.5 Grouping by Hierarchy
27.6 Grouping with Functions
27.7 SUMMAIY . .« o o v v ottt e e e e e e 256

219
P22
P24
229
229
233
235
244
P49
252

iX

Contents

27.8 EXCICISES o o o e e e e e e e s

28 More Aggregations
28.1 Aggregations while KeepingRows
28.2 Filtering Partsof Groups L
283 Summary e
28.4 EXercises

29 Cross-tabulation Deep Dive
29.1 Cross-tabulation Summaries e
292 AddingMargins
29.3 NormalizingResults
29.4 Hierarchical Columns with Cross Tabulations
29.5 Heatmaps e
206 SUMMATY o e
20.7 EXEICISES . . . v v v i e e e e e e e

30 Melting, Transposing, and Stacking Data
30.1 MeltingData
30.2 Un-meltingData
30.3 Transposing Data
30.4 Stacking & Unstacking
30.5 Stacking
30.6 Flattening Hierarchical Indexes and Columns
30.7 Summary
30.8 Exercises

31 Working with Time Series
31.1 LoadingtheData
31.2 Adding Timezone Information,
313 ExploringtheData
31.4 Slicing Time Series e
31.5 Missing TimeseriesData
31.6 Exploring Seasonality
31.7 ResamplingData
31.8 Rules with Offset Aliases i
31.9 Combining Offset Aliases
31.10Anchored Offset Aliases
31.11Resampling to Finer-grain Frequency
31.12Grouping a Date Column with pd.Grouper
BLI3Summary e
BLI4EXercises o e

32 Joining Dataframes
32.1 Adding RowstoDataframes.
32.2 Adding Columns to Dataframes
323 JOINS . . . o o e e e e e e e e e e e
324 JoinIndicators e e e e e

SEEEEE RREERERE EEEEE &

SEEEEEEEEERE ERE

Contents

32.5 Merge Validation B07
32.6 Joining Data Example. L L B07
32.7 Dirty Devil Flow and Weather Data. B07
32.8 Joining Data B09
32.9 Validating Joined Data 310
310
512
312
B15
B15

32.10Visualizationof Merged Data,
B2.11Summaryo
B2.I2EXercises

33 Exporting Data
33.1 DirtyDevilData
33.2 Readingand Writing 316
333 Creating CSV Files 316
33.4 ExportingtoExcel
33.5 Feather
33.6 SQL . . . e
33.7 JSON . . o e
338 Summary
33.9 Exercises

B13
B19
320
324
324
34 Styling Dataframes
341 LoadingtheData
34.2 Sparklines 329
34.3 The .style Attribute 329
344 Formatting 330
34.5 Embedding BarPlots 330
34.6 Highlighting e
347 Heatmapsand Gradients
34.8 CaptionS . . . v v o v i
349 CSSProperties« o ot 332
34.10Stickinessand Hiding L o o 332
34.11Hiding theIndex 332
B34.125uUmmary e 334

B4 13EXEICISES « « v v v v o e e e e e e e e 334
B39

B39

B49

B54

B55

35 Debugging Pandas
35.1 Checking if Dataframesare Equal
35.2 Debugging Chains
35.3 Debugging Chains PartIl
354 Debugging ChainsPartIIl
35.5 Debugging Chains PartIV
35.6 Debugging Apply (and Friends)
35.7 Memory Usage
35.8 Timing Information L
359 Summary 3
35.10Exercises 356

36 Summary

xi

Contents

About the Author
Index
Also Available

One more thing

xii

§ B E

Forward

Python is easy to learn. You can learn the basics in a day and be productive. With only an
understanding of Python, moving to pandas can be difficult or confusing. It borrows some ideas
from NumPy that are not common in the wider Python ecosystem. This book is meant to aid you
in mastering pandas.

I have taught Python and pandas to many people over the years, in large corporate
environments, small startups, and in Python and Data Science conferences. I have seen what trips
people up, and confuses them. With the correct background, an attitude of acceptance, and a deep
breath, much of this confusion evaporates.

Having said this, pandas is an excellent tool. Many use it around the world to great success. I
hope to empower you to do this as well.

Cheers!

Matt

Chapter 1

Introduction

I have been using Python in some professional capacity or another since the turn of the century.
One of the trends that I have seen in that time is the uptake of Python for various aspects of data
science—gathering data, cleaning data, analysis, machine learning, and visualization. The pandas
library has seen much uptake in this area.

pandas! is a data analysis library for Python that has exploded in popularity over the past years.
The website describes it like this:

“pandas is an open-source, BSD-licensed library providing high-performance, easy-to-
use data structures and data analysis tools for the Python programming language.”

-pandas.pydata.org

My description of pandas is: pandas is an in-memory analysis tool, which has SQL-like
constructs, essential statistical and analytic support, as well as graphing capability. Because pandas
is built on top of Cython and NumPy, it has less memory overhead and runs quicker than pure
Python code. Many people use pandas to replace Excel, perform ETL (extract transform load
processing to move data from one place to another), process tabular data, load CSV or JSON files,
prep for machine learning, and more. Though it grew out of the financial sector (for time series
analysis), it is now a general-purpose data manipulation library.

With its NumPy lineage, pandas adopts some NumPy’isms that regular Python programmers
may not be aware of or familiar with. Yes, one could go out and use Cython to perform fast typed
data analysis with a Python-like dialect, but with pandas, you don’t need to. This work is done for
you. If you use pandas and the vectorized operations, you are getting close to C-level speeds for
numeric work but writing Python.

1.1 Who this book is for

This guide is intended to introduce pandas and patterns for best practices. If you work with tabular
data and need capabilities beyond Excel, this is for you. This book covers many (but not all) aspects
of the library, as well as some gotchas or details that may be counter-intuitive or even non-pythonic
to longtime users of Python.

This book assumes a basic knowledge of Python. The author has written Illustrated Guide to
Python 3 that provides all the background necessary.

!pandas (http:/ /pandas.pydata.org) refers to itself in lowercase, so this book will follow suit. When I'm referring
to specific code, I will set it in a monospace font.

http://pandas.pydata.org

1. Introduction
1.2 Datain this Book

Every attempt has been made to use data that illustrates real-world pandas usage. As a visual
learner, I appreciate seeing where data is coming and going. As such, I try to shy away from just
showing tables of random numbers that have no meaning. I will show best practices gleaned from
years of using pandas.

I have selected a variety of datasets to show that the advice given in this book is applicable in
most situations you may encounter.

1.3 Hints, Tables, and Images

The hints, tables, and graphics found in this book have been collected over my years of using
pandas. They come from hang-ups, notes, and cheat sheets that I have developed after using
pandas and teaching others how to use the library.

In the physical version of this book, there is an index that has also been battle-tested during
development. Inevitably, when I was doing analysis for consulting or clients, I would check that
the index had the information I needed. If it didn’t, I added it.

If you enjoy this book, please consider writing a review on Amazon. That is one of the best
ways to thank an author.

Chapter 2

Installation

This book will use Python 3 throughout! Please do not use Python 2 unless you have a compelling
reason to. Python 3 is the future of the language, and the current pandas releases do not support
Python 2.

2.1 Anaconda

With that out of the way, let’s address the installation of pandas. The easiest and least painful
way to install pandas on most platforms is to use the Anaconda distribution?. Anaconda is a
meta-distribution of Python, which contains many additional packages that have traditionally
been annoying to install unless you have the necessary toolchains to compile Fortran and C code.
Anaconda allows you to skip the compile step because it provides binaries for most platforms. The
Anaconda distribution itself is freely available, though commercial support is available as well.

After installing the Anaconda package, you should have a conda executable. Running the
following command will install pandas:

$ conda install pandas

Note

This book shows commands run from the UNIX command prompt. They are prefixed by
the prompt §. Unless otherwise noted, these commands will run on the Windows command
prompt as well. Do not type the prompt. It is included to distinguish commands run via a
terminal or command prompt from Python code.

We can verify that this works by trying to import the pandas package:

$ python

>>> import pandas

>>> pandas.__version__
'1.3.2"

Note

The command above shows a Python prompt, >>>. Do not type the Python prompt. It is
included to make it easy to distinguish Python code from the output of Python code. For
example, the output of the above, '1.3.2' does not have the prompt in front of it. The book
also includes the secondary Python prompt, ... for code that is longer than a single line.

2. Installation

Note that Jupyter does not use the Python prompt in its cells.

If the library successfully imports, you should be good to go.

2.2 Pip

If you aren’t using Anaconda, I recommend you use pip® to install pandas. The pandas library will
install on Windows, Mac, and Linux via pip.

It may be necessary to prepare the operating system for building pandas from source by
installing dependencies and the proper header files for Python. On Ubuntu, this is straightforward,
other environments may be different:

$ sudo apt-get install build-essential python-all-dev

Using virtualenv* will alleviate the need for superuser access during installation. Because
virtualenv uses pip, it can download and install newer releases of pandas if the version found
on the distribution is lagging.

On Mac and Linux platforms, the following commands create a virtualenv sandbox and install
the latest pandas in it (assuming that the prerequisite files are also installed):
$ python3 -m venv pandas-env

$ source pandas-env/bin/activate
(pandas-env)$ pip install pandas

Once you have pandas installed, confirm that you can import the library and check the version:

$ source pandas-env/bin/activate
(pandas-env)$ python

>>> import pandas

>>> pandas.__version__

'1.3.2"

On Windows, you will open a Command Prompt and run the following to create a virtual
environment:
> python -m venv pandas-env

> pandas-env/Scripts/activate
(pandas-env)> pip install pandas

Note

The Windows command prompt, >, is shown in the previous command. Do not type it. Only
type the commands following the prompt.

Try to import the library and check the version:

(pandas-env)> python
>>> import pandas

>>> pandas.__version__
'1.3.2'

%https:/ /anaconda.com / downloads
3http:/ / pip-installer.org/

4http: / /www.virtualenv.org

https://anaconda.com/downloads
http://pip-installer.org/
http://www.virtualenv.org

2.3. Jupyter Overview

METASNAKE quit | Logo
Files Running Clusters

Select items to perform actions on them. Upload Neww &
Oo ~ W/ Name« LastModified | Filesize
O O blog ayear ago
O [3 blog (Selective Sync Conflict) ayear ago
0O (3 books ayear ago
O (3 courses amonth ago

J

~—

Figure 2.1: Jupyter home page.

2.3 Jupyter Overview

I recommend you use Jupyter (or a program that connects to it) as a data exploration tool. I use
Jupyter classic, though there are other options: JupyterLab, connecting to Jupyter via PyCharm,
VSCode, Emacs, as well as Google Colab. Jupyter classic will give you basic functionality and is
included in many cloud environments.

Jupyter notebook is an environment for combining interactive coding and textin a web browser.
This allows us to easily share code and narrative around that code. An example that was popular
in the scientific community was the discovery of gravitational waves.?

The name Jupyter is a rebranding of an open-source project previously known as iPython
Notebook. The rebranding was to emphasize that although the backend is written in Python,
Jupyter supports various kernels to run other languages, including Julia (the ”"Ju” portion), Python
("pyt”), and R (“er”). All popular data science programming languages.

The architecture of Jupyter includes a server running various kernels. Using a notebook we can
interact with a kernel. Typically we use a web browser to do this, but other interfaces exist, such
as an emacs mode (ein), PyCharm, or VSCode.

To install Jupyter, type:

$ pip install notebook

Once Jupyter is installed, launch it with this command:
$ jupyter-notebook

Then navigate to https:/ /localhost:8888 and you should be presented with the Jupyter home
page.

Click on the dropdown button on the right that says “New” and select Python 3.

At this point, you are presented with a notebook with an empty cell. Jupyter is a modal
environment. There are two modes, command mode and edit mode. Command mode is for
creating and manipulating cells. Edit mode is for changing what is inside of a single cell.

There are many commands for both modes. If you are in command mode (and you will know
that because the box around the cell is blue), you can type “h”, and it will bring up a pop-up with

Shttps:/ /losc.ligo.org /s/events/ GW150914/ GW150914_tutorial.html

https://localhost:8888
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

2. Installation

Files Running Clusters
Select items to perform actions on them. Upload | Neww | &

Notebook:

Oo + m/ Namey [ootbond]

O (] blog Other:

.) Text File

(O [3 blog (Selective Sync Conflict)
Folder

0O D books Terminal

O [courses amonth ago

O [emacs ayear ago

Figure 2.2: Creating a Python 3 Jupyter notebook.

the keyboard shortcuts for both command and edit mode. Don’t worry about memorizing all of
them. Here are the commands you will be using most of the time in command mode:

* h - Bring up help (ESC to dismiss)
¢ a- Create cell above

* b - Create cell below

* x-Cutcell

¢ c- Copy cell

¢ v - Paste cell below

¢ Enter - Go into Edit Mode

e m - Change cell type to Markdown
e y - Change cell type to code

* ii - Interrupt kernel

* (00 - Restart kernel

e Ctr-Enter - Execute cell

When you click on a cell or type Enter, you go into edit mode. You will see that the outline turns

green if you are in edit mode. In edit mode, you have basic editing functionality. A few keys to
know:

e Ctr-Enter - Run cell (execute Python code, render Markdown)
e ESC - Go back to command mode

¢ TAB - Tab completion

e Shift-TAB - Bring up tooltip (ESC to dismiss)

2.4. Summary

File Edit View Insert Cell Kernel Widgets Help Trusted

In [1]: greeting = 'hello’
print(greeting)

hello

Figure 2.3: Running a cell in Jupyter with basic Python commands.

2.4 Summary

In this chapter, we saw how to set up a Python environment using Anaconda or Pip. We also
introduced the Jupyter notebook. I recommend that you get comfortable with Jupyter. Not only is
it free and open-source, but many large cloud providers also offer Jupyter in their environments.

2.5 Exercises

1. Install pandas on your machine (using Anaconda or pip).
2. Install Jupyter on your machine.

3. Launch Jupyter and run the following in a cell:

import pandas
pandas.show_versions()

Chapter 3

Data Structures

One of the keys to understanding pandas is to understand the data model. At the core of pandas
are two data structures. The most widely used data structures are the Series and the DataFrame for
dealing with array data and tabular data. This table shows their analogs in the spreadsheet and
database world.

Data Structure Dimensionality — Spreadsheet Analog Database Analog Linear Algebra
Series 1D Column Column Column Vector
DataFrame 2D Single Sheet Table Matrix

Figure 3.1: Different dimensions of pandas data structures

An analogy with the spreadsheet world illustrates the basic differences between these types. A
DataFrame is similar to a sheet with rows and columns, while a Series is similar to a single column
of data (when we refer to a column of data in this text, we are referring to a Series).

Diving into these core data structures a little more is helpful because a bit of understanding
goes a long way towards better use of the library. We will spend a good portion of time discussing
the Series and DataFrame. Both the Series and DataFrame share features. For example, they both have
an index, which we will need to examine to understand how pandas works.

Also, because the DataFrame can be thought of as a collection of columns that are really Series
objects, it is imperative that we have a comprehensive study of the Series first. Additionally (and
perhaps odd to some), we will see this when we iterate over rows, and the rows are represented as
Series (however, if you find yourself consistently dealing with rows instead of columns, you are
probably not using pandas in an optimal way).

Some have compared the data structures to Python lists or dictionaries, and I think this is a
stretch that doesn’t provide much benefit. Mapping the list and dictionary methods on top of
pandas’ data structures just leads to confusion.

3.1 Summary

The pandas library includes two main data structures and associated functions for manipulating
them. This book will focus on the Series and DataFrame. First, we will look at the Series as the
DataFrame can be considered a collection of columns represented as Series objects.

11

3. Data Structures

Data Structures

pd.Series
age teacher name
0 15 0 Ashby 0 Dave
1 16 1 Ashby 1 Suzy
2 16 2 Jones 2 Adam
3 15 3 Jones 3 Liv
Index Column Axis 1
pd.DataFrame
Axis 0 \ /N /
\ | age teacher name |
0 15 Ashby Dave
1 16 Ashby Suzy
2 16 Jones Adam
3 15 Jones Liv

Figure 3.2: Figure showing the relation between the main data structures in pandas. Namely, that a
dataframe can have on or many series.

3.2 Exercises

1. If you had a spreadsheet with data, which pandas data structure would you use to hold the
data? Why?

2. If you had a database with data, which pandas data structure would you use to hold the data?
Why?

12

Chapter 4

Series Introduction

A Series is used to model one-dimensional data. The Series object also has a few more bits of data,
including an index and a name. A common idea through pandas is the notion of an axis. Because
a series is one-dimensional, it has a single axis—the index.

Below is a table of counts of songs artists composed. We will use this to explore the series:

Artist Data

0 145
1 142
2 38
3 13

If you wanted to represent this data in pure Python, you could use a data structure similar to
the one that follows. The dictionary, series, has a list of the data points stored under the 'data’
key. In addition to an entry in the dictionary for the actual data, there is an explicit entry for the
corresponding index values for the data (in the 'index' key), as well as an entry for the name of the
data (in the 'name' key):
>>> serjes = {

"index':[0, 1, 2, 3],
'data':[145, 142, 38, 13],
‘name ':'songs'

}

The get function defined below can pull items out of this data structure based on the index:
>>> def get(series, idx):

value _idx = series['index'].index(idx)
return series['data'][value_idx]

>>> get(series, 1)

142
Note
The code samples in this book are shown as if they were typed directly into an interpreter.
Lines starting with >>> and ... are interpreter markers for the input prompt and continuation

prompt respectively. Lines that are not prefixed by one of those sequences are the output from
the interpreter after running the code.

13

4. Series Introduction

In Jupyter (and IPython) you do not see the prompts. I include them to help distinguish
between code and output.

The Python interpreter will print the return value of the last invocation (even if the print
statement is missing) automatically. If you desire to use the code samples found in this book,
leave the interpreter prompts out.

4.1 The index abstraction

This double abstraction of the index seems unnecessary at first glance—a list already has integer
indexes. But there is a trick up pandas’ sleeves. By allowing non-integer values, the data structure
supports other index types such as strings, dates, as well as arbitrarily ordered indices, or even
duplicate index values.
Below is an example that has string values for the index:

>>> songs = {

"index ':['Paul', 'John', 'George', 'Ringo'],

'data':[145, 142, 38, 13],

"name ':'counts'

}

>>> get(songs, 'John')
142

The index is a core feature of pandas’data structures given the library’s past in analysis of
financial data or time-series data. Many of the operations performed on a Series operate directly
on the index or by index lookup.

4.2 The pandas Series

With that background in mind, let’s look at how to create a Series in pandas. It is easy to create a
Series object from a list:

>>> import pandas as pd
>>> songs2 = pd.Series([145, 142, 38, 13],
.. name='counts')

>>> songs?2

0 145
1 142
2 38
3 13

Name: counts, dtype: int64

When the interpreter prints our series, pandas makes a best effort to format it for the current
terminal size. The series is one-dimensional. However, this looks like it is two-dimensional. The
leftmost column is the index, which contains entries for the index. The index is not part of the
values. The generic name for an index is an axis, and the values of the index—0, 1, 2, 3—are
called axis labels. The data—145, 142, 38, and 13—is also called the values of the series. The two-
dimensional structure in pandas—a DataFrame—has two axes, one for the rows and another for the
columns.

The rightmost column in the output contains the values of the series—145, 142, 38, and 13. In
this case, they are integers (the console representation says dtype: int64, dtype meaning data type,
and int64 meaning 64-bit integer), but in general, the values of a Series can hold strings, floats,

14

4.2. The pandas Series

Series Parts

*_—_______________—— name (optional)
counts

) 0 145

index — 1 149 | — values
2 38
3 13

Figure 4.1: The parts of a Series.

booleans, or arbitrary Python objects. To get the best speed (and to leverage vectorized operations),
the values should be of the same type, though this is not required.

It is easy to inspect the index of a series (or data frame), as it is an attribute of the object:
>>> songs2.index
RangeIndex(start=0, stop=4, step=1)

The default values for an index are monotonically increasing integers. songs2 has an integer-
based index.

Note

The index can be string-based as well, in which case pandas indicates that the datatype for the
index is object (not string):
>>> songs3 = pd.Series([145, 142, 38, 13],
.. name='counts ',
index=['Paul', 'John', 'George', 'Ringo'])

Note that the dtype that we see when we print a Series is the type of the values, not the
index. Even though this looks two-dimensional, remember that the index is not part of the
values:

>>> songs3

Paul 145
John 142
George 38
Ringo 13

Name: counts, dtype: int64
When we inspect the index attribute, we see that the dtype is object:

>>> songs3.index
Index(['Paul', 'John', 'George', 'Ringo'],
dtype='object')

The actual data (or values) for a series does not have to be numeric or homogeneous. We can insert
Python objects into a series:

>>> class Foo:
pass

>>> ringo = pd.Series(

15

4. Series Introduction

['Richard', 'Starkey', 13, Foo()],
name='ringo"')

>>> ringo

0 Richard
1 Starkey
2 13
3 <__main__.Foo instance at Ox...>

Name: ringo, dtype: object

In the above case, the dtype-datatype-of the Series is object (meaning a Python object). This can
be good or bad.

The object data type is also used for a series with string values. In addition, it is also used
for values that have heterogeneous or mixed types. If you have just numeric data in a series, you
wouldn’t want it stored as a Python object, but rather as an int64 or float64, which allow you to do
vectorized numeric operations.

If you have time data and it says it has the object type, you probably have strings for the dates.
Using strings instead of date types is bad as you don’t get the date operations that you would get
if the type were datetime64[ns]. A series with string data, on the other hand, has the type of object.
Don’t worry; we will see how to convert types later in the book.

4.3 The NaN value

A value that may be familiar to NumPy users, but not Python users in general, is NaN. When pandas
determines that a series holds numeric values but cannot find a number to represent an entry, it
will use NaN. This value stands for Not A Number and is usually ignored in arithmetic operations.
(Similar to NULL in SQL).

Here is a series that has NaN in it:
>>> import numpy as np
>>> nan_series = pd.Series([2, np.nan],

index=['0no', 'Clapton'])

>>> pan_series
Ono 2.0
Clapton NaN
dtype: floaté64

Note

One thing to note is that the type of this series is float64, not int64! The type is a float because
float64 supports NaN, which int64 does not. When pandas sees numeric data (2) as well as the
np.nan, it coerced the 2 to a float value.

Below is an example of how pandas ignores NaN. The .count method, which counts the number of
values in a series, disregards NaN. In this case, it indicates that the count of items in the series is one,
one for the value of 2 at index location Ono, ignoring the NaN value at index location Clapton:

>>> nan_series.count()
1

You can inspect the number of entries (including missing values) with the .size property:

>>> pan_series.size
2

16

4.4. Optional Integer Support for NaN

Note

If you load data from a CSV file, an empty value for an otherwise numeric column will become
NaN. Later, methods such as .fillna and .dropna will explain how to deal with NaN.

None, NaN, nan, <NA>, and null are synonyms in this book when referring to empty or missing data
found in a pandas series or dataframe.

4.4 Optional Integer Support for NaN

The int64 type does not support missing data. Many considered that a wart of pandas. As of
pandas 0.24, there is optional support for another integer type that can hold missing values denoted
as <NA> below. The documentation calls this type the nullable integer type. When you create a series,
you can pass in dtype='Inté4' (note the capitalization):
>>> nan_series2 = pd.Series([2, None],

index=['0Ono', 'Clapton'],

dtype='1Int64"')
>>> nan_series2
Ono 2
Clapton <NA>
dtype: Int64

Operations on these series still ignore NaN or <NA>:

>>> nan_series2.count()
1

Note

You can use the .astype method to convert columns to the nullable integer type. Just use the
string 'Inté4' as the type:

>>> nan_series.astype('Int64"')

Ono 2

Clapton <NA>

dtype: Inté64

I generally ignore 'Int64' as I tend to clean up missing data. Also, when you ingest data in pandas,
most functions use 'int64' (in lowercase) by default.

4.5 Similar to NumPy

The Series object behaves similarly to a NumPy array. As shown below, both types respond to
index operations:

>>> import numpy as np

>>> numpy_ser = np.array([145, 142, 38, 13])

>>> songs3[1]

142

>>> numpy _ser[1]
142

They both have methods in common:

17

4. Series Introduction

Filtering with Boolean Arrays

songs3 songs3 > songs3.median()
John John
George 38 George False
Ringo 13 Ringo False
Paul 145
John 142

songs3[songs3 > songs3.median()]

Figure 4.2: Filtering a series with a boolean array.

>>> songs3.mean ()
84.5

>>> numpy_ser.mean ()
84.5

They also both have a notion of a boolean array. A boolean array is a series with the same index
as the series you are working with that has boolean values, and it can be used as a mask to filter
out items. Normal Python lists do not support such fancy index operations, like sticking a list into
an index operation.

In this example, we will make a mask:

>>> mask = songs3 > songs3.median() # boolean array

>>> mask

Paul True
John True
George False
Ringo False

Name: counts, dtype: bool

Once we have a mask, we can use that as a filter. We just need to pass the mask into an index
operation. If the mask has a True value for a given index, the value is kept. Otherwise, the value is
dropped. The mask above represents the locations that have a value higher than the median value
of the series.
>>> songs3[mask]

Paul 145

John 142
Name: counts, dtype: int64

18

4.6. Categorical Data

NumPy also has filtering by boolean arrays, but lacks the .median method on an array. Instead,

NumPy provides a median function in the NumPy namespace. The equivalent version in NumPy
looks like this:

>>> numpy_ser[numpy _ser > np.median(numpy_ser)]
array ([145, 1421)

Note

Both NumPy and pandas have adopted the convention of using import statements in
combination with an as statement to rename their imports to two letter acronyms. This is called
aliasing:

>>> import pandas as pd

>>> import numpy as np

Renaming imports provides a slight typing benefit (four fewer characters) while still
allowing the user to be explicit with their namespaces.

Be careful, as you may see the following cast about in code samples, blogs, or
documentation:

>>> from pandas import *

Though you see star imports frequently used in examples online, I would advise not to use
star imports. I never use them in my book examples or code that I write for clients. They have
the potential to clobber items in your namespace and make tracing the source of a definition
more difficult (especially if you have multiple star imports). As the Zen of Python states,

“Explicit is better than implicit™.

4.6 Categorical Data

When you load data, you can indicate that the data is categorical. If we know that our data is
limited to a few values; we might want to use categorical data. Categorical values have a few
benefits:

e Use less memory than strings

¢ Improve performance

Can have an ordering

Can perform operations on categories

Enforce membership on values

Categories are not limited to strings; we can also convert numbers or datetime values to categorical
data.

To create a category, we pass dtype="category" into the Series constructor. Alternatively, we can
call the .astype("category") method on a series:

Type import this into an interpreter to see the Zen of Python. Or search for “PEP 20”.

19

4. Series Introduction

>>> s = pd.Series(['m', '1', 'xs', 's', 'x1'], dtype='category')
>>> g

0 m
1 1

2 XS

3 s

4 x1

dtype: category

Categories (b, object): ['1',

m', 's', 'xl', 'xs']

If this series represents the size, there is a natural ordering as a small is less than a medium. By
default, categories don’t have an ordering. We can verify this by inspecting the .cat attribute that
has various properties:

>>> s.cat.ordered
False

To convert a non-categorical series to an ordered category, we can create a type with the
CategoricalDtype constructor and the appropriate parameters. Then we pass this type into the
.astype method:
>>> s2 = pd.Series(['m', '1', 'xs', 's', 'x1'])
>>> size type = pd.api.types.CategoricalDtype(

. categories=['s','m','1'], ordered=True)
>>> s3 = s2.astype(size_type)

>>> g3

0 m
1 1
2 NaN
3 s
4 NaN

dtype: category
Categories (3, object): ['s' < 'm' < '1']

In this case, we limited the categories tojust 's', 'm', and '1', but the data had values that were
not in those categories. Converting the data to a category type replaces those extra values with NaN.
If we have ordered categories, we can do comparisons on them:

>>> g3 >
0 True
1 True
2 False
3 False
4

d

S

False
type: bool

The prior example created a new Series from existing data that was not categorical. We can also
add ordering information to categorical data. We just need to make sure that we specify all of the
members of the category or pandas will throw a ValueError:

>>> s.cat.reorder _categories(['xs','s','m','1", 'x1'],
. ordered=True)

0 m

1 1

2 XS

3 s

4 x1

dtype: category

20

4.7. Summary

Categories (b, object): ['xs' < 's' < 'm' < '"1' < 'x1']

Note

String and datetime series have a str and dt attribute that allow us to perform common
operations specific to that type. If we convert these types to categorical types, we can still
use the str or dt attributes on them:

>>> s3.str.upper()
0 M
1 L
2 NaN
3 S
4 NaN
dtype: object

Method Description

pd.Series(data=None, index=None, Create a series from data (sequence, dictionary, or
dtype=None, name=None, copy=False) scalar).

s.index Access index of series.

s.astype(dtype, errors='raise') Cast a series to dtype. To ignore errors (and return

original object) use errors="ignore’.

s[boolean_array] Return values from s where boolean_array is True.

s.cat.ordered Determine if a categorical series is ordered.

s.cat.reorder_categories(new_categories, Add categories (potentially ordered) to the series.
ordered=False) new_categories must include all categories.

Table 4.1: Series Overview Attributes and Methods

4.7 Summary

The Series object is a one-dimensional data structure. It can hold numerical data, time data,
strings, or arbitrary Python objects. If you are dealing with numeric data, using pandas rather
than a Python list will benefit you. Pandas is faster, consumes less memory, and comes with built-
in methods that are very useful to manipulate the data. Also, the index abstraction allows for
accessing values by position or label. A Series can also have empty values and has some similarities
to NumPy arrays. It is the primary workhorse of pandas; mastering it will pay dividends.

4.8 Exercises

1. Using Jupyter, create a series with the temperature values for the last seven days. Filter out
the values below the mean.

2. Using Jupyter, create a series with your favorite colors. Use a categorical type.

21

Chapter 5

Series Deep Dive

There are many operations you can do with a Series. In this chapter, we will introduce many of
them.

We will pull data from the US Fuel Economy website”. This site has data on the efficiency of
makes and models of cars sold in the US since 1984.

5.1 Loading the Data

I have a copy of this data in my GitHub repository. One of the nice features of pandas is that the
read_csv function can accept not only URLs but also ZIP files. Because this ZIP file contains only
a single file, we can use this function. If it was a ZIP file with multiple files, we would need to
decompress the data to pull out the file we were interested in.

The first columns in the dataset we will investigate are city08 and highway08, which provide
information on miles per gallon usage while driving around in the city and highway respectively:
>>> import pandas as pd
>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/' \

e 'vehicles.csv.zip'

>>> df = pd.read csv(url)

>>> city_mpg = df.city08

>>> highway _mpg = df.highway08
Let’s look at the data:

>>> city_mpg

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: cityB8, Length: 41144, dtype: inté64

"https:/ / www.fueleconomy.gov / feg / download.shtml

23

https://www.fueleconomy.gov/feg/download.shtml

5. Series Deep Dive

In [1: city.
abs
add
add prefix
add suffix
In []: agqg
aggregate
In []: align
all
B any
In []: append

Figure 5.1: Jupyter will pop up a list of options for completions when you hit TAB following a period.

>>> highway_mpg

0 25
1 14
2 33
3 12
4 23
41139 26
41140 28
41141 24
41142 24
41143 21

Name: highway08, Length: 41144, dtype: int64

It looks like each series has around 40,000 integer entries. Because the type of this series is int64,
we know that none of the values are missing.

5.2 Series Attributes

The pandas library provides a lot of functionality. The built-in dir function will list the attributes
of an object. Let’s examine how many attributes there are on a series:
>>> len(dir(city_mpg))
457

Wow! There are over 400 attributes on a series. In contrast, a Python list or dictionary has
around 40 attributes. Do not fret; you will not need to memorize all of these if you get comfortable
with a tool like Jupyter. If you have a Series object, you can hit TAB after a period, and it will pop
up a list of completions. (Other tools are also able to do this for Python objects).

What functionality do all of these attributes provide? Here is a summary. There are many ways
to categorize these, and I'm roughly going to do it by what the result of the method is:

e Dunder methods (.__add__, . _iter__, etc) provide many numeric operations, looping,
attribute access, and index access. For the numeric operations, these return Series.

e Corresponding operator methods for many of the numeric operations allow us to tweak the
behavior (there is an .add method in addition to .__add_).

24

5.3. Summary

Aggregate methods and properties which reduce or aggregate the values in a series down to
a single scalar value. The .mean, .max, and .sum methods and .is_monotonic property are all
examples.

Conversion methods. Some of these start with .to_ and export the data to other formats.

Manipulation methods such as .sort_values, .drop_duplicates, that return Series objects with
the same index.

Indexing and accessor methods and attributes such as .1loc and .iloc. These return Series or
scalars.

String manipulation methods using .str.

Date manipulation methods using .dt.

Plotting methods using .plot.

Categorical manipulation methods using .cat.

Transformation methods such as .unstack and .reset_index, .agg, .transform.
Attributes such as .1index and .dtype.

A bunch of private attributes that we will ignore (around 130 of them).

We will cover many of these in the following chapters.

5.3 Summary

In this chapter, we introduced the notion that pandas objects have a large number of attributes and
methods. Do not let this overwhelm you. You don’t need to memorize all of the methods.

5.4 Exercises

1.
2.

Explore the documentation for five attributes of a series from Jupyter.

How many attributes are found on the .str attribute? Look at the documentation for three
of them.

How many attributes are found on the .dt attribute? Look at the documentation for three of
them.

25

Chapter 6
Operators (& Dunder Methods)

6.1 Introduction

This chapter, will review some of the operators and magic or dunder methods found in series. In
short, these are the protocols that determine how the Python language reacts to operations. For
example, when you use the + operation, Python is dispatching to the . __add__ method. When you
use a loop with a for statement, Python dispatches to the .__iter__ method.

This will not be a deep treatise on the dunder methods (double underscore methods) or magic
methods.

Let’s look at how this works with a pandas series.

6.2 Dunder Methods

Here is an example in pure Python. When you run this code:
>>> 2 + 4
6
Under the covers, Python runs this:
>>> (2)._ _add__(4)
6

A Python integer object thathasa . __add__method responds to the + operation. Because a Series
object has this method, you can call + on it. There is also a .__div__ method that supports division.
One way to calculate the average of the two series is the following:

>>> (city_mpg + highway_mpg)/2

0 22.0
1 11.5
2 28.0
3 11.0
4 20.0
41139 22.5
41140 24.0
41141 21.0
41142 21.0
41143 18.5
Length: 41144, dtype: floaté64

Note that the type of the result is float64.

27

6. Operators (& Dunder Methods)
6.3 Index Alignment

Of note, you can apply most math operations on a series with another series, and you can also use a
scalar (as we did with the division). When you operate with two series, pandas will align the index
before performing the operation. Aligning will take each index entry in the left series and match it
up with every entry with the same name in the index of the right series. In the above case, values
with the same index name are added together and then divided by 2. These operations return a
Series object.

Because of index alignment, you will want to make sure that the indexes:

* Are unique (no duplicates)

¢ Are common to both series

If these situations do not exist you will get missing values or a combinatoric explosion of results.
Here is a simple example of two series that have repeated index entries as well as non-common
entries:

>>> g

pd.Series([10, 20, 30], index=[1,2,2])
pd.Series([35, 44, 53], index=[2,2,4], name='s2"')

>>> g2

>>> g

1 10

2 20

2 30
dtype: int64

>>> g2

2 35

2 44

4 53

Name: s2, dtype: inté64

>>> g1 + s?2
1 NaN
2 55.0
2 64.0
2 65.0
2 74.0
4 NaN
dtype: floaté64

Note that index names 1 and 4 have NaN while index name 2 has four results—every 2 from s1
is matched up with every 2 from s2.

6.4 Broadcasting

When you perform math operations with a scalar, pandas broadcasts the operation to all values. In
the above case, the values are added together. This makes it easy to write mathematical operations.
It also makes the code easy to read.

There is another advantage to broadcasting. With many math operations, these are optimized
and happen very quickly in the CPU. This is called vectorization. (A numeric pandas series is a
block of memory, and modern CPUs leverage a technology called Single Instruction/Multiple Data
(SIMD) to apply a math operation to the block of memory.)

28

6.4. Broadcasting

Duplicate Index Alignment

s
1 10
20
2 30
sl + s?

s2
35
2 44
4 53

74.00

nan

Figure 6.1: The index entries align before operating. If they are not unique, you will get a combinatoric
explosion of index entries. Notice that each 2 name from s1 matches each 2 name from the index in s2.

Duplicate Index Alignment

s
1 10
20
2 30

s2
35
2 44
4 53

s1.add(s2, fill _value=0)

74.00

53.00

Figure 6.2: One upside to the operation methods like .add is that you can specify a fill value. The index

entries will still align before performing the operation.

29

6. Operators (& Dunder Methods)

Operations that are available include: + -, /, // (floor division), % (modulus), @ (matrix
multiplication), ** (power), <, <=, ==, |=, >=, >, & (binary and), " (binary xor), | (binary or).

6.5 Iteration

Note that there is also a .__iter__ method on a series, and you can loop over the items in a series.
However, I recommend avoiding using a for loop with a series. That is a code smell, indicating that
you are probably doing things the wrong way. You are removing one of the benefits of pandas—
vectorization and operating at the C level. If you use a loop to search or filter for values, we will
see that there are other ways to do that that are usually faster and they make the code easier to
understand.

6.6 Operator Methods

You might wonder why pandas also provides methods for the standard operators. In general,
functions and methods have parameters to allow you to parameterize or change the behavior based
on the parameters. The dunder methods generally fill in NaN (or <NA> for Int64) when one of the
operands is missing following index alignment. The operator methods have a fill_value parameter
that changes this behavior. If one of the operands is missing, it will use the fill_value instead.

If we call the .add method with the default parameters, we will have the same result as the +
operator:

>>> g1 + s?
1 NaN
2 55.0
2 64.0
2 65.0
2 74.0
4 NaN
dtype: floaté64

>>> s1.add(s2)
1 NaN
2 55.0
2 64.0
2 65.0
2 74.0
4 NaN
dtype: floaté64

However, we can use the fill_value parameter to specify that we use zero instead:

>>> s1.add(s2, fill value=0)
10.0
55.0
64.0
65.0
74.0
53.0
1

2
2
2
2
4
dtype: floaté64

30

6.7. Chaining

6.7 Chaining

Another stylistic reason to prefer the method to the operator is that it makes chaining manipulations
easier. Because most pandas methods do not mutate data in place but instead return a new object,
we can keep tacking on method calls to the returned object. We will see many examples of this
throughout the book. Chaining makes the code easy to read and understand. We can chain with
operators as well, but it requires that we wrap the operation with parentheses.
Below, we calculate the average of city and highway mileage using operators:
>>> ((city_mpg +
highway_mpg)

R

e)

0 22.0
1 11.5
2 28.0
3 11.0
4 20.0
41139 22.5
41140 24.0
41141 21.0
41142 21.0
41143 18.5
Length: 41144, dtype: float64

Here is an example of chaining to calculate the average of city and highway mileage:

>>> (city_mpg
.add(highway_mpg)

.div(2)
cee)
0 22.0
1 11.5
2 28.0
3 11.0
4 20.0
41139 22.5
41140 24.0
41141 21.0
41142 21.0
41143 18.5
Length: 41144, dtype: float64

This is a simple example, but I really like how chaining can lead to understanding your code. I
like to put these operations in their own line. I read this as “we are taking the city_mpg series, then
we are adding the highway_mpg series to it. Finally, we are dividing by two.”

Method Operator Description
s.add(s?2) s + 82 Adds series
s.radd(s2) s2 +'s Adds series
s.sub(s?2) s - s2 Subtracts series
s.rsub(s?2) s2 - s Subtracts series
s.mul(s2) s.multiply(s2) s * g2 Multiplies series
s.rmul(s2) s2 * s Multiplies series
s.div(s2) s.truediv(s?2) s/ s2 Divides series

31

6. Operators (& Dunder Methods)

.rdiv(s2) s.rtruediv(s2)
.mod(s2)

.rmod(s2)

.floordiv(s2)
.rfloordiv(s?2)

.pow(s2)

.rpow(s2)

.eq(s2)

.ne(s?2)

.gt(s2)

nw nu n nun no n n n n un

s.ge(s?2)
s.1t(s2)
s.1le(s?2)
np.invert(s)

np.logical and(s, s2)

np.logical or(s, s2)

s<?2
s <=2
~S

s & s?

s | s2

Divides series

Modulo of series division

Modulo of series division

Floor divides series

Floor divides series

Exponential power of series

Exponential power of series

Elementwise equals of series

Elementwise not equals of series

Elementwise greater than of se-
ries

Elementwise greater than or
equals of series

Elementwise less than of series

Elementwise less than or equals
of series

Elementwise inversion of
boolean series (no pandas
method).

Elementwise logical and of
boolean series (no pandas
method).

Elementwise logical or of
boolean series (no pandas
method).

Table 6.1: Math Methods and Operators

6.8 Summary

Pandas series respond to most common math operations. You can use the operator directly, and
will broadcast the operation to all the values. Alternatively, you can also call the corresponding
method for the operator if you want to make chaining easier or parameterize the behavior of the

operation.

6.9 Exercises
With a dataset of your choice:

1. Add a numeric series to itself.

2. Add 10 to a numeric series.

3. Add a numeric series to itself using the .add method.

4. Read the documentation for the .add method.

32

Chapter 7
Aggregate Methods

Aggregate methods collapse the values of a series down to a scalar. Aggregations are the numbers
that your boss wants to be reported. If you worked at a burger joint and the boss came in and
asked how the restaurant was doing, you wouldn’t answer, ”Sally ordered a burger and fries. Joe
ordered a cheeseburger and shake. Tom ordered ...”.

Your boss doesn’t care about that level of detail. They care about:

e How many people came in (count)

¢ How much food was ordered (count)

What was the total revenue (sum)

When did people come (skew)

What was the average purchase amount (mean)

Aggregations allow you to take detailed data and collapse it to a single value. This chapter will
explore how to do that on a series.

7.1 Aggregations

If we want to calculate the mean value of a series, we can use an aggregation method, .mean:

>>> city mpg.mean()
18.369045304297103

There are also a few aggregate properties. These start with .is_. You do not call them; they will
evaluate to True or False:
>>> city _mpg.is_unique
False

>>> city mpg.is_monotonic_increasing
False

One method to be aware of is the .quantile method. By default, it returns the 50% quantile. You
can specify another level, or you can pass in a list of levels. In the latter case, the result of calling
.quantile no longer returns a scalar but a Series object:

33

7. Aggregate Methods

Series Aggregation
city
city.quantile(.8)

0 19

1 9 » 21.0

2 23 Returns a scalar!

3 10

4 1z city.quantile([.1, .8, .99])
41139 19
T — L1 T 130
41141 18 Or a series! 0 '99 40'00
41142 18 * -
41143 16

Figure 7.1: Aggregation collapses a series to a scalar value. However, the .quantile method also accepts a
list of quantile levels and will return a Series object in that case.

>>> city mpg.quantile()
17.0

>>> city_mpg.quantile(.9)
24.0

>>> city_mpg.quantile([.1, .5, .9])

0.1 13.0
0.5 17.0
0.9 24.0

Name: city68, dtype: float64

7.2 Count and Mean of an Attribute

Here is a neat trick in pandas to calculate aggregates. If you want the count of values that meet
some criteria, you can use the .sum method. For example, if we want the count and percent of cars
with mileage greater than 20, we can use the following code:
>>> (city_mpg

.gt(20)

.sum()

)

10272
If you want to calculate the percentage of values that meet some criteria, you can apply the

.mean method:

>>> (city_mpg

.gt(20)

.mu1(100)

.mean ()

34

7.3. .agg and Aggregation Strings

o)
24.965973167412017

This trick comes from the fact that Python treats True as 1 and False as 0. (In earlier versions of
the language, True and False did not exist, so programmers used 1 and 0 as stands ins for them). To
maintain backward compatibility, the language maintained math operations on booleans. If you
sum up a series of boolean values, the result is the count of True values. If you take the mean of a
series of boolean values, the result is the fraction of values that are True. You can use this trick with
any series of boolean values.

There are a bunch of aggregate methods found on a series, and they are listed in the table below.

7.3 .aggand Aggregation Strings

Finally, the .agg method does aggregations (not too much of a surprise given the name). But like
.quantile, it also transforms the data in other ways depending on how it is called.
You can use .agg to calculate the mean:

>>> city mpg.agg('mean')
However, that is easier with city_mpg.mean(). Where .agg shines is in the ability to perform
multiple aggregations. In that case, it returns a series. You can pass in the names of aggregations

methods, NumPy reduction functions, Python aggregations, or define your own aggregation
function. Here is an example calling all of these types of reductions:

>>> import numpy as np
>>> def second to last(s):
return s.iloc[-2]

>>> city mpg.agg(['mean', np.var, max, second to_last])

mean 18.369045
var 62.503036
max 150.000000
second_to_last 18.0600000

Name: cityB8, dtype: float64

Below are strings that the .agg method accepts. You can pass in other strings as well, but they
will return non-aggregating results. When you pass in a string to .agg pandas will map it to a
method found on the Series:

Method Description

‘all’ Returns True if every value is truthy.

‘any' Returns True if any value is truthy.

'autocorr' Returns Pearson correlation of series with shifted

self. Can override lag as keyword
argument(default is 1).

‘corr' Returns Pearson correlation of series with other
series. Need to specify other.

‘count’ Returns count of non-missing values.

‘cov' Return covariance of series with other series. Need to
specify other.

"dtype’ Type of the series.

"dtypes’ Type of the series.

"empty’ True if no values in series.

'hasnans' True if missing values in series.

35

7. Aggregate Methods

36

idxmax'

idxmin'

is_monotonic'
is_monotonic_decreasing'
is_monotonic_increasing'
kurt'

mad'

max'
mean'
median'
min'
nbytes'
ndim'
nunique’
quantile'
sem'
size'
skew'

std'
sum'

Returns index value of maximum value.

Returns index value of minimum value.

True if values always increase.

True if values always decrease.

True if values always increase.

Return ”excess” kurtosis (0 is normal distribution).
Values greater than 0 have more outliers than
normal.

Return the mean absolute deviation.

Return the maximum value.

Return the mean value.

Return the median value.

Return the minimum value.

Return the number of bytes of the data.

Return the number of dimensions (1) of the data.

Return the count of unique values.

Return the median value. Can override q to specify
other quantile.

Return the unbiased standard error.

Return the size of the data.

Return the unbiased skew of the data. Negative
indicates tail is on the left side.

Return the standard deviation of the data.

Return the sum of the series.

Table 7.1: Aggregation strings and descriptions

Below is a table of various aggregation methods and properties.

Method

Description

s.agg(func=None, axis=0, *args, **kwargs)

.all(axis=0, bool only=None,
skipna=True, level=None)
.any(axis=0, bool only=None,
skipna=True, level=None)

s.autocorr(lag=1)
s.corr(other, method="'pearson')

s.cov(other, min_periods=None)
s.max(axis=None, skipna=None, level=None,

numeric_only=None
.min(axis=None, skipna=None, level=None,
numeric_only=None)
.mean(axis=None, skipna=None,
level=None, numeric_only=None)
.median(axis=None, skipna=None,
level=None, numeric_only=None)
.prod(axis=None, skipna=None,
level=None, numeric_only=None,
min_count=0)

Returns a scalar if func is a single aggregation
function. Returns a series if a list of aggregations
are passed to func.

Returns True if every value is truthy. Otherwise False

Returns True if at least one value is truthy. Otherwise
False

Returns Pearson correlation between s and shifted s

Returns correlation coefficient for 'pearson’,
'spearman', 'kendall', or a callable.

Returns covariance.

Returns maximum value.

Returns minimum value.
Returns mean value.
Returns median value.

Returns product of s values.

7.4. Summary

w n n n n noun

.quantile(g=.5, interpolation='linear")

.sem(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.std(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.var(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.skew(axis=None, skipna=None,

level=None, numeric_only=None)

.kurtosis(axis=None, skipna=None,

level=None, numeric_only=None)

.nunique(dropna=True)
.count(level=None)

.size

.is_unique

.is_monotonic
.is_monotonic_increasing
.is_monotonic_decreasing

Returns 50% quantile by default. Note returns Series
if g is a list.
Returns unbiased standard error of mean.

Returns sample standard deviation.
Returns unbiased variance.

Returns unbiased skew.

Returns unbiased kurtosis.

Returns count of unique items.
Returns count of non-missing items.
Number of items in series. (Property)
True if all values are unique

True if all values are increasing

True if all values are increasing

True if all values are decreasing

Table 7.2: Aggregation methods and properties

7.4 Summary

In this chapter, we discussed ways to summarize data in a series. As you begin to analyze data,
you will find many of these keep popping up. One thing to keep in mind is that they also apply to
a DataFrame.

7.5 Exercises

With a dataset of your choice:

1.

AN L

Find the count of non-missing values of a series.

Find the number of entries of a series.

Find the number of unique entries of a series.

Find the mean value of a series.

Find the maximum value of a series.

Use the .agg method to find all of the above.

37

Chapter 8

Conversion Methods

Sometimes you will need to change the type of the data. This may be due to formats that do not
include type information, or it may be that you can have better performance (more manipulation
options or use less memory) by changing types.

In this chapter, we will look at various conversions that you might want to do to a Series.

8.1 Automatic Conversion

In pandas 1.0, a new conversion method was introduced, .convert_dtypes. This tries to convert a
Series to a type that supports pd.NA. In the case of our city_mpg series, it will change the type from
int64 to Int64:

>>> city_mpg.convert dtypes()

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: cityB8, Length: 41144, dtype: Inté64

I find that .convert_dtypes is a little too magical for me. I prefer a little more explicit control over
what happens to my data.

To specify a type for a series, you can try to use the .astype method. Our city mileage can be
held in a 16-bit integer, however an 8-bit integer will not work, as the maximum value for that
signed type is 127, and we have some cars with a value of 150:

>>> city mpg.astype('Int16")

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18

39

8. Conversion Methods

41142 18
41143 16
Name: city08, Length: 41144, dtype: Int16

>>> city mpg.astype('Int8"')
Traceback (most recent call last):

TypeError: cannot safely cast non-equivalent int64 to int8

Using the correct type can save significant amounts of memory. The default numeric type is
8 bytes wide (64 bits, ie int64 or float64). If you can use a narrower type, you can cut back on
memory usage, giving you memory to process more data.

You can use NumPy to inspect limits on integer and float types:

>>> np.iinfo('int64"')
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)

>>> np.iinfo('uint8")
iinfo(min=0, max=255, dtype=uint8)

>>> np.finfo('float16"')
finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=floatl6)

>>> np.finfo('float64')
finfo(resolution=1e-15, min=-1.7976931348623157e+308,
max=1.7976931348623157e+308, dtype=float64)

8.2 Memory Usage

To calculate memory usage of the Series, you can use the .nbytes property or the .memory_usage
method. The latter is useful when dealing with object types as you can pass deep=True to include
the amount of memory used by the Python objects in the Series.

Here we compare memory usage of default numeric integers to Int16:

>>> city_mpg.nbytes
329152

>>> city mpg.astype('Int16').nbytes
123432

Using .nbytes with object types only shows how much memory the Pandas object is taking.
The make of the autos has strings and is stored as an object. To get the amount of memory that
includes the strings, we need to use the .memory_usage method:
>>> make = df.make

>>> make.nbytes
329152

>>> make.memory usage ()
329280

>>> make.memory usage(deep=True)
2606395

The value of .nbytes is just the memory that the data is using and not the ancillary parts of the
Series. The .memory_usage includes the index memory and can include the contribution from object

types.

40

8.3. String and Category Types

In the next section, we discuss converting to a categorical. We can see that we will save a lot of
memory for the make data:
>>> (make
.astype('category")
.memory_usage (deep=True)

)
95888

8.3 String and Category Types

The .astype method can also convert numeric series to strings if you pass str into it. Note the dtype
in the example below:

>>> city mpg.astype(str)

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: cityB8, Length: 41144, dtype: object
To convert to a categorical type, you can pass in 'category' as a type:
>>> city mpg.astype('category')

0 19

1 9

2 23

3 10

4 17

41139 19

41140 20

41141 18

41142 18

41143 16

Name: cityB8, Length: 41144, dtype: category
Categories (105, int64): [6, 7, 8, 9, ..., 137, 138, 140, 150]

A categorical series is useful for string data and can result in large memory savings. This
is because pandas stores Python strings when you have string data. When you convert it to
categorical data, pandas no longer uses Python strings for each value but optimizes it, so repeating
values are not duplicated. You still have all of the functionality found off of the .str attribute,
but it comes with potentially large memory savings (if you have many duplicate values) and
performance boosts as you do not need to perform as many string operations.

8.4 Ordered Categories

To create ordered categories, you need to define your own CategoricalDtype:

41

8. Conversion Methods

>>> values = pd.Series(sorted(set(city mpg)))

>>> city_type = pd.CategoricalDtype(categories=values,
. ordered=True)

>>> city_mpg.astype(city_type)

0 19

1 9

2 23

3 10

4 17

41139 19

41140 20

41141 18

41142 18

41143 16

Name: city08, Length: 41144, dtype: category
Categories (105, int64): [6 <7 < 8 <9 ... 137 < 138 < 140 < 150]

The section on categories below will discuss more of their features.
The following table lists the types that you can pass into .astype.

String or Type Description

str 'str' Convert type to Python string

'string' Convert type to pandas string (supports
pd.NA)

int 'int' "int64’ Convert type to NumPy int64

'int32' 'uint32' Convert type to 32 signed or unsigned
NumPy integer (can also use 16 and 8).

'Int64' Convert type to pandas Int64 (supports

pd.NA). Might complain when you
convert floats or strings.

float 'float' 'float64' Convert type to NumPy float64 (can also
support 32 or 16).

‘category’ Convert type to categorical (supports
pd.NA). Can also use instance of
CategoricalDtype.

dates Don’t use this for date conversion, use

pd.to_datetime.
Table 8.1: Type and strings for column conversion

8.5 Converting to Other Types

The .to_numpy method (or the .values property) will give us a NumPy array of values, and the
.to_list will return a Python list of values. I recommend staying away from these unless necessary.
Sometimes there is a speed increase if you use straight NumPy, but there are drawbacks as well.
I find pandas objects to be a lot more user-friendly, and the code reads easier. Using Python lists
will slow down your code significantly.

As was mentioned before, a Series object is a column from a DataFrame. However, you might
need to turn a Series back into a DataFrame. When we discuss dataframes, we will show how to add
columns to them, but if you just want a dataframe with a single column, you can use the .to_frame
method:

42

8.6. Summary

>>> city mpg.to_frame()

city0s
0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

[41144 rows x 1 columns]

Also, there are many conversion methods to export data into other formats, including CSV,
Excel, HDF5, SQL, JSON, and more. These also exist on dataframes, and I find that I use them
there and never use them on a Series object. We will talk more about them in the dataframe
serialization chapter. Be aware of these methods, and realize that if you understand how they
work with dataframes, that knowledge will map back to series.

Finally, to convert to a datetime, use the to_datetime function in pandas. If you want to add
timezone information, it is a little more involved. The section on dates will discuss this.

Method Description

s.convert_dtypes(infer_objects=True, Convert types to appropriate pandas 1
convert_string=True, convert_integer=True, types (that support NA). Doesn’t try to
convert_boolean=True, convert_floating=True) reduce size of integer or float types.

s.astype(dtype, copy=True, errors='raise') Cast series into particular type. If

errors='ignore' then return original
series on error.
pd.to datetime(arg, errors='raise', dayfirst=False, Convert arg (a series) into datetime. Use
yearfirst=False, utc=None, format=None, format to specify strftime string.
exact=True, unit=None,
infer_datetime_format=False, origin='unix',
cache=True)

s.to_numpy(dtype=None, copy=False,na_value=object, Convert the series to a NumPy array.
**kwargs)
s.values Convert the series to a NumPy array.
s.to_frame(name=None) Return a dataframe representation of the
series.

pd.CategoricalDtype(categories=None, ordered=False) Create a type for categorical data.
Table 8.2: Aggregation methods and properties

8.6 Summary

Having the correct types is very convenient. Not only does it save memory, but it also enables
operations that are otherwise tedious. Whenever I teach students the fundamentals of data
analysis, I make sure that they go through each column and determine what the correct type for
that column is.

43

8. Conversion Methods

8.7 Exercises
With a dataset of your choice:

1. Convert a numeric column to a smaller type.
2. Calculate the memory savings by converting to smaller numeric types.
3. Convert a string column into a categorical type.

4. Calculate the memory savings by converting to a categorical type.

44

Chapter 9
Manipulation Methods

I consider manipulation methods to be the workhorses of pandas. When I have a dataset that I am
trying to understand, clean up, and model, I use methods that operate on a series and return a new
series (usually with the same index) to stick it back in the dataframe I'm working on. Most of the
methods we discuss here manipulate the series values but preserve the index. In this chapter, we
will explore these methods.

9.1 .applyand .where

The .apply is a curious method, and I often tell my students to avoid it, but sometimes it comes in
handy. This method allows you to apply a function element-wise to every value. If you pass in a
NumPy function that works on an array, it will broadcast the operation to the series.

However, usually, when I see this method is used, it is a code smell. How so? Because the
.apply method typically operates on each individual value in the series, the function is called once
for every value. If you have one million values in a series, it will be called one million times. It
breaks out of the fast vectorized code paths we can leverage in pandas and puts us back to using
slow Python code.

For example, we previously checked whether the values in the mileage were greater than 20. We
can also do this with the .apply method. I'll use the Jupyter %%timeit cell magic to microbenchmark
this (note this will only work in Jupyter or IPython):

>>> def gt20(val):
return val > 20

>>> f%timeit
>>> city mpg.apply(gt20)
7.32 ms + 390 ps per loop (mean * std. dev. of 7 runs, 180 loops each)

In contrast if we use the broadcasted .gt method, it runs almost 50 times faster:
>>> Ghtimeit
>>> city_mpg.gt(20)

156 ps = 30.2 ps per loop (mean * std. dev. of 7 runs, 10000 loops each)

Here’s another example. I'm going to look at the make column from my dataset. This has the
company that made each car. There are quite a few makes in there. I might want to limit my
dataset to show the top five makes and label everything else as Other. To do that, I would use the
.value_counts method to get the frequencies:

>>> make = df.make

45

9. Manipulation Methods

>>> make

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

>>> make.value_counts()

Chevrolet 4003
Ford 3371
Dodge 2583
GMC 2494
Toyota 2071

Superior Coaches Div E.p. Dutton
Vixen Motor Company

London Coach Co Inc

Panoz Auto-Development

Qvale

Name: make, Length: 136, dtype: int64

—_

The first five entries in the index are the values I want to keep, everything else I want to replace
with Other. Here is an example using .apply:

>>> topb = make.value counts().index[:5]
>>> def generalize topb(val):
if val in topb:
return val
return 'Other'

>>> make.apply(generalize top5)

0 Other
1 Other
2 Dodge
3 Dodge
4 Other

41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Name: make, Length: 41144, dtype: object

Note that when we have already defined a function to pass into .apply that we do not call that
function. In the above example, we are not calling generalize_top5, just passing it into .apply. The
.apply method will call the function for us.

In the above example, generalize_topb is called once for every value. A faster, more idiomatic
manner of doing this is using the .where method. This method takes a boolean array to mark where a
condition is true. The .where method keeps values from the series it is called on (make in the example

46

9.1. .apply and .where

The .where Method make.where(

make.isin(topb),

make make.isin(topb) other="'0ther")

Oldsmobile

False

Other

Chrysler

False

Other

Othe

19

Mitsubishi

Suzuki

0
1
2
3

19

False

False

BN = o

topb

['Chevrolet', 'Ford', 'Dodge', 'GMC', 'Toyota']

Figure 9.1: The .where method keeps the values where the index is True and uses the other parameter to
specify values for False.

below) where the boolean array is true, if the boolean array is false, it uses the value of the second
parameter, other:

>>> make.where(make.isin(top5), other='0ther")

0 Other
1 Other
2 Dodge
3 Dodge
4 Other
41139 Other
41140 Other
41141 Other
41142 Other
41143 Other

Name: make, Length: 41144, dtype: object

The .where method is optimized and if you look at the timings it is about six times faster:
>>> fhtimeit
>>> make.apply(generalize_top5)
23.3 ms + 3.31 ms per loop (mean # std. dev. of 7 runs, 10 loops each)

>>> ftimeit
>>> make.where(make.isin(top5), 'Other')
4.49 ms = 1.94 ms per loop (mean * std. dev. of 7 runs, 100 loops each)

The complement of the .where method is the .mask method. Wherever the condition is False it
keeps the original values; if it is True it replaces the value with the other parameter. Here is the
.mask version of our where statement:

47

9. Manipulation Methods

>>> make.mask (~make.isin(topb), other='0ther')

0 Other
1 Other
2 Dodge
3 Dodge
4 Other

41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Name: make, Length: 41144, dtype: object

The tilde, ~, performs an inversion of the boolean array, switching all true values to false and
vice versa.

In pandas, there is often more than one way to do something. My take is to prefer using .where
and ignore .mask since it is the complement.

9.2 If Else with Pandas

I'm going to show one more piece of code that illustrates what I consider a shortcoming of pandas.
If I wanted to keep the top five makes and use Top10 for the remainder of the top ten makes, with
Other for the rest, there is no built-in pandas method to do that. I could use the following function
in combination with .apply:

>>> yc = make.value _counts()
>>> topb = vc.index[:5]
>>> top10 = vc.index[:10]
>>> def generalize(val):
if val in topb:
return val
elif val in topl10:
return 'Topl10'
else:
return 'Other'

>>> make.apply(generalize)

0 Other
1 Other
2 Dodge
3 Dodge
4 Other

41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Name: make, Length: 41144, dtype: object

To replicate this in pandas, I would need to chain calls to .where:

>>> (make
.where(make.isin(top5), 'Top10')
.where(make.isin(top10), 'Other')
)

48

9.3. Missing Data

0 Other
1 Other
2 Dodge
3 Dodge
4 Other

41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Name: make, Length: 41144, dtype: object

Another option is to use the select function found in the NumPy library. This function works
with a pandas series. The interface takes a list of boolean arrays and a list with corresponding
replacement values. Finally, you can give it a default value:
>>> import numpy as np
>>> np.select([make.isin(top5), make.isin(top10)],

.. [make, 'Top10'], 'Other')
array(['Other', 'Other', 'Dodge', ..., 'Other', 'Other', 'Other'],
dtype=object)

Note that this returns a NumPy array. You can wrap itin a Series if you desire. Ilike this syntax
for longer if statements than chaining .where calls because I think it is easier to understand:

>>> pd.Series(np.select([make.isin(topb), make.isin(top10)],
[make, 'Top10'], 'Other'), index=make.index)

0 Other
1 Other
2 Dodge
3 Dodge
4 Other

41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Length: 41144, dtype: object

9.3 Missing Data

Filling in missing data is another common operation, and this is important because many machine
learning algorithms do not work if there is missing data. Also, it is prudent to be aware of how
much data is missing to make sure you are getting the full story from your data.

The cylinders column has missing values. Remember our trick to calculate the count of items
that have some property? We can use it here to determine the count of entries that are missing. We
convert the property to booleans (using . isna), then call .sum on it:
>>> cyl = df.cylinders
>>> (cyl

.isna()
.sum()

cee)
206

49

9. Manipulation Methods

From the cylinders series alone, it is hard to determine why these values are missing. Typically
we will have more context, and a dataframe gives that to us. We will use the make column which
corresponds with the cylinder values to give us some insight. First, let’s find the index where the
values are missing in the cylinders column and then show what those makes are:

>>> missing = cyl.isna()
>>> make.loc[missing]

7138 Nissan
7139 Toyota
8143 Toyota
8144 Ford
8146 Ford
34563 Tesla
34564 Tesla
34565 Tesla
34566 Tesla
34567 Tesla

Name: make, Length: 206, dtype: object

Note

We often use the same term to represent different items. In pandas, both a series and a data
frame have an index, the value that names each row. In addition, we use an index operation,
performed with square brackets ([and]), to select values from a series or a data frame.

I will try to use the noun ”“index” to discuss the member of the series or data frame. If I use
“index” as a verb, or say “index operation”, it is referring to selecting out subsets of data. Below,
I am indexing off of the .loc attribute. I could also say that I'm doing an indexing operation:

make.loc[missing]

We will talk about the .1loc attribute when we discuss indexing. For now, realize that if we index
.loc with a boolean array, it returns the rows where the boolean array is true.

9.4 Filling In Missing Data

It looks like the cylinder information is missing from cars that are electric. A Tesla car-because it
has an electric engine, not a combustion engine-has zero cylinders. The .fillna method allows you
to specify a replacement value for any missing data. To fill in the missing values with 8 we can do
the following:

>>> cyl[cyl.isna()]

7138 NaN
7139 NaN
8143 NaN
8144 NaN
8146 NaN
34563 NaN
34564 NaN
34565 NaN
34566 NaN
34567 NaN

Name: cylinders, Length: 206, dtype: float64

50

9.4. Filling In Missing Data

Missing Data for Series

data
— Lo
2 10.00 (data '
3 18.00
3 18.00 .dropna())
4 12.00 4 12.00
5 r;an 6 7.00
6 2,00 7 8.00
7 8.00] ~—~—
(data 1 0.00
FFi110)) 2 10.00
‘ 3 18.00
4 12.00
Also bfill 5 12.00
(data 6 7.00
.interpolate()) 7 8.00
1 0.00 (data
2 10.00 .fillna(data 1 0.00
3 18.00 .mean())) 2 10.00
4 12.00 3 18.00
5 9.50 4 12.00
6 7.00 5 9.17
7 8.00 6 7.00
7 8.00

Figure 9.2: We can drop missing data or fill it in with other values.

>>> cyl.fillna(0).1oc[7136:7141]
7136 6.0
7137 6.0
7138 0.0
7139 0.0
7140 6.0
7141 6.0
lin

Name: cy ders, dtype: float64

51

9. Manipulation Methods
Note

Almost every operation that I show in this book does not mutate data. In other words, the
above operation returns a new series with the missing values replaced by zero. If I want to
update my cyl variable, I would need to assign it to this new result. Usually, I end up chaining
each command and build up a sequence of operations.

9.5 Interpolating Data

Another option for replacing missing data is the .interpolate method. This comes in handy if the
data is ordered (as time series data often is) and there are holes in the data. For example if you had
temperature measurements, temp, you could fill in the values using this:

>>> temp = pd.Series([32, 40, None, 42, 39, 32])
>>> temp

0 32.0

1 40.0

2 NaN

3 42.0

4 39.0

5 32.0
dtype: float64

>>> temp.interpolate()
0 32.0
1 40.0
2 41.0
3 42.0
4 39.0
5 32.0
dtype: floaté64

Notice that the value for index label 2 was missing, however, there are values for index labels 1
and 3. After interpolation, the missing value becomes 41.0, the interpolation of the values around
the missing value.

9.6 Clipping Data

If you have outliers in your data, you might want to use the .clip method. In the example below,
the first 447 entries in city range from 9 to 31:

>>> city mpg.loc[:446]

0 19
1 9
2 23
3 10
4 17
442 15
443 15
444 15
445 15
446 31

Name: cityB8, Length: 447, dtype: inté64

52

9.7. Sorting Values

The .sort _values Method

s.sort_values()

S
0 40
1 20
2 30
3 20
4 10

4 10
1 20
3 20
2 30
0 40

Figure 9.3: The .sort_values method will return a new series with the values sorted (and the original labels
in the corresponding order).

We can trim the values to be between the 5th (11.0) and 95th quantile (27.0) with the following

code:

>>> (city_mpg

B OIS R e T

442
443
444
445
446

Name: city08,

.loc[:446]
.clip(lower=city mpg.quantile(.05),
upper=city mpg.quantile(.95))

19
11
23
11
17
15
15
15

15
27

Length: 447, dtype: inté64

In fact, if you dig into the implementation of .clip, you will see a call to .where. Below is a
portion of the . _clip_with_scalar method that .clip calls:

if upper is not None:

subset
result

self.to_numpy() <= upper
result.where(subset, upper)

if lower is not None:

subset
result

self.to_numpy() >= lower
result.where(subset, lower)

9.7 Sorting Values

There are other manipulation methods that might return objects with different index entries.
The .sort_values method will sort the values in ascending order and also rearrange the index

accordingly:

>>> city_mpg.sort _values()

7901

6

53

9. Manipulation Methods

34557 6
37161 6
21060 6
35887 6
34563 138
34564 140
32599 150
31256 150
33423 150

Name: cityB8, Length: 41144, dtype: inté64

Note that because of index alignment, you can still do math operations (and many other
operations) on a sorted series:

>>> (city mpg.sort values() + highway mpg) / 2

0 22.0
1 11.5
2 28.0
3 11.0
4 20.0
41139 22.5
41140 24.0
41141 21.0
41142 21.0
41143 18.5
Length: 41144, dtype: floaté4

9.8 Sorting the Index

If you want to sort the index of a series, you can use the .sort_index method. Below we unsort the
index by sorting the values, then essentially revert that:

>>> city mpg.sort values().sort_index()

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: city08, Length: 41144, dtype: inté4

9.9 Dropping Duplicates

Many datasets have duplicate entries. The .drop_duplicates method will remove values that appear
more than once. You can determine whether to keep the first or last duplicate value found using
the keep parameter. If you set it to 'last' it will use the last value. The default value is 'first'. If
you set it to False it will remove any duplicated values (including the initial value). Notice that

54

9.10. Ranking Data

The .drop_duplicates Method

1 s.drop_duplicates()
2 30
3 20
4 10

s.drop_duplicates(keep="1last")

s.drop_duplicates(keep=False)

Figure 9.4: The .drop_duplicates method will return a new series that drops the values after they appear
more than once by default. The behavior can be changed with the keep parameter.

this call keeps the original index. However, there are only 105 results (down from 41144) now that
duplicates are removed:

>>> city mpg.drop _duplicates()

0 19
1 9
2 23
3 10
4 17
34364 127
34409 114
34564 140
34565 115
34566 104

Name: cityB8, Length: 105, dtype: inté4

9.10 Ranking Data

The . rank method will return a series that keeps the original index but uses the ranks of values from
the original series. You can control how ranking occurs with the method parameter. By default, if
two values are the same, their rank will be the average of the positions they take. You can specify
'min' to put equal values in the same rank, and 'dense' to not skip any positions:

>>> city_mpg.rank()

0 27060.5
1 235.5
2 35830.0

55

9. Manipulation Methods

3 607.5
4 19484.

o

41139 27060.
41140 29719.
41141 23528.
41142 23528.
41143 15479.0

Name: city08, Length: 41144, dtype: floaté64

o © o1 o1

>>> city_mpg.rank(method="'min"')

0 25555.0
1 136.0
2 35119.0
3 336.0
4 17467.0

41139 25555,
41140 28567.
41141 21502.
41142 21502.
41143 13492.0

Name: city08, Length: 41144, dtype: float64

(<= I <> I < B <]

>>> city_mpg.rank(method="dense"')

0 14.0
1 4.0
2 18.0
3 5.0
4 12.0
41139 14.0
41140 15.0
41141 13.0
41142 13.0
41143 11.0

Name: city08, Length: 41144, dtype: floaté64

9.11 Replacing Data

The .replace method allows you to map values to new values. There are many ways to specify
how to replace the values. You can specify a whole string to replace a string or use a dictionary to
map old values to new values. This example uses the former:

>>> make.replace('Subaru', '"A/NI ")

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 AN
41139 AN
41140 AN
41141 AN
41142 AN
41143 AN

56

9.12. Binning Data

Name: make,

S
0 40
1 20
2 30
3 20
4 10

The . rank Method

s.rank()

5.00

2.50

s.rank(method="min")

4.00

2.50

BN = o

1.00

5.00

2.00

s.rank(method="dense")

4.00

2.00

awN = o

1.00

4.00

2.00

3.00

2.00

N = o

1.00

Figure 9.5: The .rank method has various options for dealing with ties.

Length: 41144,

dtype: object

The to_replace parameter’s value can contain a regular expression if you provide the regex=True
parameter. In this example we use regular expression capture groups (they are specified in the
expression by the parentheses). In value parameter we refer to these groups (\1 refers to the contents
inside the first parentheses and \2 refers to the contents in the second parentheses) when replacing
the original value:

>>> make.replace(r'(Fer)ra(r.*)"',

.. value=r'\2-other-\1', regex=True)
0 Alfa Romeo
1 ri-other-Fer
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make,

Length: 41144,

9.12 Binning Data

dtype: object

You can bin data as well. Using the cut function, you can create bins of equal width:

>>> pd.cut(city_mpg, 10)
0 (5.856, 20.4]
1 (5.856, 20.4]

57

9. Manipulation Methods

S
0 40
1 20
2 30
3 20
4 10

The . replace Method

s.replace(to_replace=[40, 10], value=[42, 9.8])

s.replace(to_replace={40: 42, 10:

0 | 42.00
1 20.00
2 30.00
3 |20.00
4 9.80
9.8})
0 |42.00
1 20.00
2 30.00
3 |20.00
4 9.80

Figure 9.6: The .replace method illustrating lists and dictionaries.

S
0 Dave
1 Suzy
2 | Adam
3 Liv

s.replace(to_replace='z.*', value='zanne', regex=True)

The .replace Method for Series

s.replace(to_replace='Suzy', value='Suzanne')

s.replace(to_replace={'Suzy': 'Suzanne'})

0 Dave

1 Suzanne
2 Adam
3 Liv

0 Dave

1 Suzanne
2 Adam
3 Liv

0 Dave

1 Suzanne
2 Adam
3 Liv

Figure 9.7: The .replace method illustrating different replacement mechanisms.

58

9.12. Binning Data

2 (20.4, 34.8]
3 (5.856, 20.4]
4 (5.856, 20.4]

41139 (5.856, 20.4]

41140 (5.856, 20.4]

41141 (5.856, 20.4]

41142 (5.856, 20.4]

41143 (5.856, 20.4]

Name: cityB8, Length: 41144, dtype: category

Categories (10, interval[float64]): [(5.856, 20.4] < (20.4, 34.8] < ...

(121.2, 135.6] < (135.6, 150.0]]

Notice that the results of this call is a series with categorical values.
If you have specific sizes for bin edges, you can specify those. In the following example five
bins are created (so you need to provide six edges):

>>> pd.cut(city_mpg, [0, 10, 208, 406, 70, 150])

0 (10, 20]
1 (8, 10]
2 (20, 40]
3 (0, 10]
4 (10, 20]

41139 (10, 20]

41140 (10, 20]

41141 (10, 20]

41142 (10, 20]

41143 (10, 20]

Name: cityB8, Length: 41144, dtype: category

Categories (b, interval[int64]): [(0, 10] < (10, 20] < (28, 40]

< (48, 70] < (70, 150]]

Note the bins have a half-open interval. They do not have the start value but do include the
end value. If the city_mpg series had values with 0 or values above 150, they would be missing after
binning the series.

You can bin data with quantiles instead. If you wanted 10 bins that had approximately the same
number of entries in each bin (rather that each bin width being the same), use the qcut function:

>>> pd.qcut(city _mpg, 10)

0 (18.0, 20.0]
1 (5.999, 13.0]
2 (21.0, 24.0]
3 (5.999, 13.0]
4 (16.0, 17.0]
41139 (18.0, 20.0]
41140 (18.0, 20.0]
41141 (17.0, 18.0]
41142 (17.0, 18.0]
41143 (15.0, 16.0]

Name: cityB8, Length: 41144, dtype: category
Categories (10, interval[float64]): [(5.999, 13.8] < (13.8, 14.0] < ...
(18.0, 20.0] < (20.0, 21.8] < (21.0, 24.0] < (24.0, 150.0]]

59

9. Manipulation Methods

Both of these functions allow you to set the labels to use instead of the categorical intervals they

generate:

>>> pd.qcut(city mpg, 10, labels=list(range(1,11)))
0 7

1 1

2 9

3 1

4 5

41139 7

41140 7

41141 6

41142 6

41143 4

Name: city08, Length: 41144, dtype:

Method

category
Categories (10, int64): [1 <2 <3 < 4 ...

7 <8 <9 <10]

Description

S.

S.

apply(func, convert dtype=True,
args=(), **kwds)

where(cond, other=nan, inplace=False,
axis=None, level=None, errors='raise',
try cast=False)

np.select(condlist, choicelist,

60

default=0)

.fillna(value=None, method=None,

axis=None, inplace=False, limit=None,
downcast=None)

.interpolate(method="'1linear', axis=0,

limit=None, inplace=False,
limit_direction=None, 1limit_area=None,
downcast=None, **kwargs)

.clip(lower=None, upper=None, axis=None,

inplace=False, *args, **kwargs)

.sort_values(axis=0, ascending=True,

inplace=False, kind='quicksort',
na_position='last', ignore_index=False,
key=None)

.sort_index(axis=0, level=None,

ascending=True, inplace=False,
kind="'quicksort', na_position='last',
sort_remaining=True,
ignore_index=False, key=None)

.drop_duplicates(keep="'first',

inplace=False)

Pass in a NumPy function that works on the series, or
a Python function that works on a single value.
args and kwds are arguments for func. Returns a
series, or dataframe if func returns a series.

Pass in a boolean series/dataframe, list, or callable as
cond. If the value is True, keep it, otherwise use
other value. If it is a function, it takes a series and
should return a boolean sequence.

Pass in a list of boolean arrays for condlist. If the
value is true use the corresponding value from
choicelist. If multiple conditions are True, only
use the first. Returns a NumPy array.

Pass in a scalar, dict, series, or dataframe for value. If
it is a scalar, use that value, otherwise use the
index from the old value to the new value.

Perform interpolation with missing values. method
may be linear, time among others.

Return a new series with values clipped to lower and
upper.

Return a series with values sorted. The kind option
may be 'quicksort', 'mergesort' (stable), or
'heapsort'. na_position indicates location of NaNs
and may be 'first' or 'last'.

Return a series with index sorted. The kind option
may be 'quicksort', 'mergesort' (stable), or
'heapsort'. na_position indicates location of NaNs
and may be 'first' or 'last'.

Drop duplicates. keep may be 'first', 'last', or
False. (If False, it removes all values that were
duplicated).

9.13. Summary

s.rank(axis=0, method='average',
numeric_only=None, na_option='keep',
ascending=True, pct=False)

s.replace(to_replace=None, value=None,
inplace=False, limit=None, regex=False,
method="'pad')

pd.cut(x, bins, right=True, labels=None,
retbins=False, precision=3,
include_lowest=False,
duplicates="'raise', ordered=True)

pd.qgcut(x, q, labels=None, retbins=False,
precision=3, duplicates='raise')

Return a series with numerical ranks. method allows
you to specify tie handling. 'average', 'min', 'max"',
'first' (uses order they appear in series), 'dense’
(like 'min', but rank only increases by one after tie).
na_option allows you to specify NaN handling.

'keep' (stay at NaN), 'top' (move to smallest),
'bottom' (move to largest).

Return a series with new values. to_replace can be
many things. If it is a string, number, or regular
expression, you can replace it with a scalar value. It
can also be a list of those things which requires
values to be a list of the same size. Finally, it can be
a dictionary mapping old values to new values.

Bin values from x (a series). If bins is an integer, use
equal-width bins. If bins is a list of numbers
(defining minimum and maximum positions) use
those for the edges. right defines whether the right
edge is open or closed. labels allows you to specify
the bin names. Out of bounds values will be
missing.

Bin values from x (a series) into q equal sized bins (10
for quantiles, 4). Alternatively, can pass in a list of
quantile edges. Out of bounds values will be
missing.

Table 9.1: Manipulation methods and properties

9.13 Summary

In this chapter, we explored many methods and functions that are useful for changing the data. We
saw how to use function application with the .apply method, but try to avoid that and use np.select
instead to get better performance. We discussed various ways to deal with missing data. We saw
that we can sort both the values and the index. We can replace data and we can bin data. These
operations will come in useful as you begin to analyze data.

9.14 Exercises

With a dataset of your choice:

1. Create a series from a numeric column that has the value of 'high' if it is equal to or above
the mean and 'low' if it is below the mean using .apply.

2. Create a series from a numeric column that has the value of 'high' if it is equal to or above
the mean and 'low' if it is below the mean using np.select.

3. Time the differences between the previous two solutions to see which is faster.

4. Replace the missing values of a numeric series with the median value.

5. Clip the values of a numeric series to between to 10th and 90th percentiles.

61

9. Manipulation Methods

6.

10.

62

Using a categorical column, replace any value that is not in the top 5 most frequent values
with 'Other’.

Using a categorical column, replace any value that is not in the top 10 most frequent values
with 'Other'.

Make a function that takes a categorical series and a number (n) and returns a replace series
that replaces any value that is not in the top n most frequent values with 'Other".

Using a numeric column, bin it into 10 groups that have the same width.

Using a numeric column, bin it into 10 groups that have equal sized bins.

Chapter 10

Indexing Operations

Indexing is an overloaded term in the pandas world. Both a series and a dataframe have an index
(the labels down the left side for each row). In addition, both types support the Python indexing
operator ([]). But that is not all! They both have attributes (.1oc and .iloc) that you can index
against (using the Python indexing operator). This section will address both changing the index
and accessing parts of a series with the indexing operators.

10.1 Prepping the Data and Renaming the Index

To ease explaining the various operations, I'm going to take the automobile mileage data series
with the city miles per gallon values and insert each car’s make as the index. This is because many
operations work on the index position while others work on the index label. If these are both
integer values, it can be a little confusing but becomes more clear if the index has string labels.

We will use the .rename method to change the index labels. We can pass in a dictionary to map
the previous index label to the new label:

>>> ¢city2 = city_mpg.rename(make.to dict())

>>> city?2

Alfa Romeo 19
Ferrari 9
Dodge 23
Dodge 10
Subaru 17
Subaru 19
Subaru 20
Subaru 18
Subaru 18
Subaru 16

Name: city08, Length: 41144, dtype: int64

To view the index you can access the .index attribute:

>>> ¢city2.index
Index(['Alfa Romeo', 'Ferrari', 'Dodge', 'Dodge', 'Subaru', 'Subaru',
'Toyota', 'Toyota', 'Toyota',

'Saab', 'Saturn', 'Saturn', 'Saturn', 'Saturn', 'Subaru', 'Subaru',

'Subaru', 'Subaru', 'Subaru'],
dtype='object', length=41144)

63

10. Indexing Operations

Figure 10.1: The .rename method will return a new series with the original values but new index labels. If
you pass in a scalar value it will change the .name attribute of the series on the new series it returns, leaving

The . rename Method for Series

the index intact.

The . rename method also accepts a series, a scalar, a function that takes an old label and returns
anew label or a sequence. When we pass in a series and the index values are the same, the values

S s.rename(index={0: 'first'})
0 Dave first Dave
1 Suzy 1 Suzy
2 | Adam def to_str(val): 2 Adam
3 Li return f"idx-{val}" 3 Liv
[\
s.rename(to_str)
idx-0 Dave
idx-1 Suzy
idx-2 Adam
idx-3 Liv
s2 = pd.Series(['a', 'b', 'c', 'd'])
s.rename(index=s2)
a Dave
b Suzy
c Adam
. N " d Liv
s.rename(index="first")
> 0 Dave
. 1 Suzy
Only changes the name attribute! 2 Adam
3 Liv

from the series that we passed in are used as the index:

>>> city2 = city_mpg.rename(make)

>>> city?2
Alfa Romeo
Ferrari
Dodge
Dodge
Subaru

Subaru
Subaru
Subaru
Subaru
Subaru
Name: city08,

Careful though! If you pass a scalar value (a single string) into .renanme, the index will stay the

19

9
23
10
17
19
20
18
18
16

Length: 41144, dtype: int64

same, but the .name attribute of the series will update:

64

10.2. Resetting the Index

>>> city2.rename('citympg')
Alfa Romeo 19

Ferrari 9
Dodge 23
Dodge 10
Subaru 17
Subaru 19
Subaru 20
Subaru 18
Subaru 18
Subaru 16

Name: citympg, Length: 41144, dtype: inté4

10.2 Resetting the Index

Sometimes you need a unique index to perform an operation. If you want to set the index to
monotonic increasing, and therefore unique integers starting at zero, you can use the .reset_index
method. By default, this method will return a dataframe, moving the current index into a new
column:

>>> city2.reset_index()
index city08

0 Alfa Romeo 19
1 Ferrari 9
2 Dodge 23
3 Dodge 10
4 Subaru 17
41139 Subaru 19
41140 Subaru 20
41141 Subaru 18
41142 Subaru 18
41143 Subaru 16

[41144 rows x 2 columns]

To drop the current index and return a Series, use the drop=True parameter:

>>> city2.reset_index(drop=True)

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: cityB8, Length: 41144, dtype: inté64

Note that you can sort the values and the index with .sort_values and .sort_index respectively.
Because those keep the same index, but just rearrange the order, they do not impact operations that
align on the index.

65

10. Indexing Operations

The .reset_index Method for Series

S s.reset_index() index counts
Paul 145 0 Paul 145
1 John 142
John 142 Returns a dataframe! 2 George 38
George 38 3 Ringo 13
Ringo 13 (s
.rename_axis("first")
.reset_index()
first counts
0 Paul 145
) 1 John 142
Rename index column 2 George 38
3 Ringo 13
s.reset_index(drop=True)
> 0 145
Ret el 1 142
eturns a series! 2 38
3 13

Figure 10.2: The .reset_index method will return a dataframe or a series with the index changed to a
monotonically increasing index.

10.3 The .1loc Attribute

Let’s shift the focus onto pulling data out by using indexing operators. You can index directly on
a series object, but I recommend not doing it. I prefer to be a little more explicit. I would index off
of the .1loc or .iloc attributes.

The .1oc attribute deals with index labels. It allows you to pull out pieces of the series. You can
pass in the following into an index operation on . loc:

e A scalar value of one of the index labels

A list of index labels.

A slice of labels (closed interval so it includes the stop value).

An index.
* A boolean array (same index labels as the series, but with True or False values.

e A function that accepts a series and returns one of the above.

If you pass in a scalar with the label of an index, you need to be careful. If there are duplicate
labels in the index, it will return a series, but if there is only one value for that label, it will return a
scalar. In the example below 'Subaru' has multiple index entries, but 'Fisker' only has one. Note
the types they return. One returns a series while the other returns a scalar:

66

10.3. The .loc Attribute

Figure 10.3: Indexing off of the .loc attribute will return a series if the index label is duplicated.

The . loc Attribute for Series

S s.loc["Paul"]
Paul 145
John 142 Returns a scalar!
George 38
Ringo 13
George 2

>>> city2.loc['Subaru']

Subaru
Subaru
Subaru
Subaru
Subaru

Subaru
Subaru
Subaru
Subaru
Subaru

Name: city08,

17
21
22
19
20
19
20
18

18
16

Length: 885,

>>> city2.loc['Fisker']

20

s.loc["George"]

Returns a series!

dtype: int64

» 145

George

George

If you want to guarantee that a series is returned, pass in a list rather than passing in a scalar

value. It can be a list with a single value or a list with multiple values:

>>> city2.loc[['Fisker']]

Fisker

Name: cityB8, dtype:

>>> city2.loc[['Ferrari',

Ferrari
Ferrari
Ferrari
Ferrari
Ferrari

20

Lamborghini
Lamborghini
Lamborghini
Lamborghini
Lamborghini

9
12
11
10
11

0O 00 00O OO O -

int64

"Lamborghini ']]

67

10. Indexing Operations

The . loc Attribute for Series

S s.loc[["Paul"]]
—~ " | Paul | 145
John 142 Returns a series!
George 38
Ringo 13
George 2

s.loc[["George", "Paul"]]

George 38
_ George 2
Returns a series! Paul 145

Figure 10.4: Indexing off of the .loc attribute with a list of index names will return a series.

Name: city08, Length: 357, dtype: inté4

This next option might seem a little weird if you are used to normal list slicing with Python.
When we slice sequences, we use integer index position, however with .loc we can use a slice with
string values. You need to be aware that if join will first need to sort the index if you are slicing
with duplicate index labels. Otherwise, you will see a KeyError:

>>> city2.loc['Ferrari':'Lamborghini ']
Traceback (most recent call last):

KeyError: "Cannot get left slice bound for non-unique label: 'Ferrari

>>> city2.sort_index().loc['Ferrari':'Lamborghini']

Ferrari 10
Ferrari 13
Ferrari 13
Ferrari 9
Ferrari 10

Lamborghini 12

Lamborghini 9
Lamborghini 8
Lamborghini 13
Lamborghini 8

Name: city08, Length: 11210, dtype: int64

Note that when slicing with .1loc, it follows the closed interval. The closed interval includes
both the start index and the final index. This behavior differs from the half-open interval found in
Python’s slicing behavior for strings and lists (which includes the start index, going up to but not
including the final index). We will see that the . iloc attribute supports slicing with the half-open
interval as well.

There is another trick up the label slicing sleeve. If you have a sorted index, you can slice with
strings that are not actual labels. For example, if I wanted all the labels in city?2 that start with F and
go up to those index labels that also start with G H I, and including precisely 'J', but not anything

68

10.3. The .loc Attribute

The . loc Attribute for Series

s s.loc['George':'Paul']
KeyError exception!
Paul 145 Due to duplicate labels
John 142
George 38
Ringo 13 (s
George 2 .sort_index()
) .loc["George":"Paul"]
George 38
. George 2
Returns.a series. John 142
Closed interval. Paul 145
(s
.sort index()
. 1OC[ﬁGu . "P”]
George 38
. . George 2
Partial strings John 142

Figure 10.5: Indexing off of the .loc attribute with a slice will return a series. Note that slicing with labels is
closed and includes the end value.

else that happens to start with], I could do the following. Note, that no label has the literal value
of either the start or stop, so these are not included:

>>> city2.sort_index().loc["F":"J"]
Federal Coach 15
Federal Coach 13
Federal Coach 13
Federal Coach 14
Federal Coach 13

Isuzu 15

Isuzu 15
Isuzu 15
Isuzu 27
Isuzu 18

Name: cityB8, Length: 9040, dtype: int64

You can also pass in a pandas Index to . loc. This is useful when you have parallel pandas objects
with the same index. If you have already filtered one of them, you can get the other to conform by
passing its index into .loc. However, you need to be aware of duplicate index labels.

An example will make this more clear. Our city?2 series has many duplicated index labels. If
we index into . loc with a simple Index with only 'Dodge' in it, we get back every value for the label.
Using an index is useful if we want to align a series to a new index:

69

10. Indexing Operations

The . loc Attribute for Series

S s.loc[pd.Index(["George"])]

Paul 145 > | George 38

John 142 George 2
George 38
Ringo 13
George 2

s.loc[pd.Index(["George", "George"])]

George 38

G 2

Combinatoric explosion! G::::: 38

George 2

Figure 10.6: The .loc attribute will accept an Index in an indexing operation (no pun intended). Be careful
with duplicate index labels, as that may lead to a combinatoric explosion.

>>> idx = pd.Index(['Dodge'])
>>> city2.loc[idx]

Dodge 23
Dodge 10
Dodge 12
Dodge 11
Dodge 11
Dodge 18
Dodge 17
Dodge 14
Dodge 14
Dodge 11

Name: cityB8, Length: 2583, dtype: inté64
However, if we duplicate 'Dodge' in the Index, the previous operation has twice as many values,
a combinatoric explosion:

>>> idx = pd.Index(['Dodge', 'Dodge'])
>>> city2.loc[idx]

Dodge 23
Dodge 10
Dodge 12
Dodge 11
Dodge 11
Dodge 18
Dodge 17
Dodge 14
Dodge 14
Dodge 11

Name: city68, Length: 5166, dtype: inté64

70

10.3. The .loc Attribute

You can also pass in a boolean array to .loc. Remember that a boolean array is a series with the
same index labels as the series (or dataframe) that you are manipulating that has boolean values. If
you do an indexing operation off of . loc with a boolean array it will return only the values where
the boolean array was true.

In the example below, we will filter out values where the city mileage is above 50. First, I will
create a boolean array and store it in a variable called mask:

>>> mask = city2 > 50

>>> mask

Alfa Romeo False
Ferrari False
Dodge False
Dodge False
Subaru False
Subaru False
Subaru False
Subaru False
Subaru False
Subaru False

Name: cityB8, Length: 41144, dtype: bool

Then I will use that boolean array in an index operation off of . loc:
>>> city2.loc[mask]

Nissan 81
Toyota 81
Toyota 81
Ford 74
Nissan 84
Tesla 140
Tesla 115
Tesla 104
Tesla 98
Toyota 55

Name: cityB8, Length: 236, dtype: int64

You can see that there were only 236 entries with mileage above 50.

Note

The .loc attribute cap pulling out values by specifying index name as well by using a boolean
array. By using a boolean array, you can extract almost any data from a series. This becomes
even more powerful when you use it with dataframes and can combine logic based on different
columns.

Finally, you can use a function with the .1loc attribute. This will come in handy when chaining
operations. After multiple operations, the intermediate object you are operating on might have a
completely different index than the original object. By using a function, you will have access to the
intermediate series and be able to create a row filter based on it. For series objects, this might seem
like overkill, but it comes in very handy with dataframes.

Here is an example. I have a series with old pricing information from last year. I know that
there was a 10% increase in cost during that time. If I want to find all of the new prices that are
above $3 after inflation, we can chain these operations together:

71

10. Indexing Operations

The . loc Attribute for Series

cost (cost
.mul(inflation)
Gum 1.00 .loc[gt3]
Cookie 2.25)
Melon 3.99 > Melon 4.39
Roll 0.99 . . . Carrots 3.07
Carrots 279 Filters on intermediate value
def gt3(ser): (cost
return ser > 3 .mul(inflation)

.loc[cost > 3]
inflation = 1.10)

’ Melon \ 4.39 \

Filters on original value

Figure 10.7: The .1loc attribute will accept a function. This function accepts the current series it was called
on and should return a scalar, list, slice, or index.

>>> cost = pd.Series([1.00, 2.25, 3.99, .99, 2.79],
. index=['Gum', 'Cookie', 'Melon', 'Roll', 'Carrots'])
>>> inflation = 1.10

>>> (cost
.mul(inflation)
.. .loc[lambda s_: s_ > 3]
o)
Melon 4,389

Carrots 3.069
dtype: floaté64

If I calculate the boolean array before taking into account the inflation, (ie using the old series
instead of the chained intermediate values) I get the wrong answer:

>>> cost = pd.Series([1.00, 2.25, 3.99, .99, 2.79],
index=['Gum', 'Cookie', 'Melon', 'Roll', 'Carrots'])

>>> inflation = 1.10

>>> mask = cost > 3

>>> (cost

.mul(inflation)

. .loc[mask]

o)

Melon 4,389

dtype: floaté64

Note

The correct example above uses a lambda function. This is a syntax that Python provides for
making a function in a single line of code. We could have defined a regular Python function
instead. The following are equivalent:

72

10.4. The .iloc Attribute

The .1iloc Attribute for Series

s s.iloc[0]
» 145
Paul 145
John 142 Returns a scalar!
George 38
Ringo 13
George 2

Figure 10.8: Indexing off of the .1iloc attribute will return a scalar by location in the series.

>>> def gt3(s):
return s > 3

>>> gt3 = lambda s: s > 3

The basic rule for creating a lambda function is that you use the lambda statement followed
by the parameters (s in this case). The parameters are followed by a colon and whatever you
want to return. Note that there is an implicit return statement in the lambda function. Also,
you can only put an expression in it, you can have a statement. So it is limited to a single line of
code.

10.4 The .iloc Attribute

The series also supports indexing off of the .1iloc attribute. This attribute is analogous to .loc but
with a few differences. When we slice off of this attribute, we pull out items by index position. The
.iloc attribute supports indexing with the following:

* A scalar index position (an integer)

A list of index positions

A slice of positions (half-open interval so it does not include stop value).

A NumPy array (or Python list) of boolean values.

A function that accepts a series and returns one of the above.

In the examples below we will pull out the first value and last value by slicing off of .iloc with
a scalar. Note that because index positions are unique, we will always get the scalar value when
indexing with .iloc at a position:

>>> city2.iloc[0]
19

We can also use negative indexing to pull out the last value:

73

10. Indexing Operations

The .1iloc Attribute for Series

S s.iloc[[0]]
—~ " | Paul | 145
John 142 Returns a series!
George 38
Ringo 13
George 2
s.loc[[1, -2]]
John 142
Ringo 13

Returns a series!

Figure 10.9: Indexing off of the .iloc attribute with a list will return a series of values at the locations in the
list.

>>> ¢city2.iloc[-1]
16

If we want to return a series object, we can index it with a list of positions. This can be a list
with a single index in it or multiple index values. The following code will return a series with the
first, second, and last values:
>>> city2.iloc[[0,1,-1]]

Alfa Romeo 19
Ferrari 9
Subaru 16
Name: cityB8, dtype: int64

We can also use slices with . i1loc. In this case, slices behave as they do in Python lists and follow
the half-open interval. That is, they include the first index and go up to but do not include the last
index. If we want to return the first five items, we can use the .head method or the following code,
which takes index positions starting at 0 and includes 1, 2, 3, and 4, but does not include 5:

>>> ¢city2.iloc[0:5]
Alfa Romeo 19

Ferrari 9
Dodge 23
Dodge 10
Subaru 17

Name: cityB8, dtype: int64

To return the last eight values, you could use the following code. In Python, negative index
positions start counting from the end. The position -1 is the last index, -2 is the second to last, etc.
If we do not include a final index, the slice goes up to the end:

>>> ¢ity2.iloc[-8:]

Saturn 21
Saturn 24
Saturn 21
Subaru 19
Subaru 20

74

10.4. The .iloc Attribute

The .1iloc Attribute for Series

S s.iloc[0:3]

Paul 145 Paul 145

) John 142

John 142 Returns a series! George 38
George 38
Ringo 13
George 2

s.loc[-2:]
John 142
Ringo 13

Returns a series!

Figure 10.10: Indexing off of the .1iloc attribute with a slice uses the half-open interval of positions.

Subaru 18
Subaru 18
Subaru 16

Name: city08, dtype: int64
You can also use a NumPy array of booleans (or a Python list), but if you use what we call a
boolean array (a pandas series with booleans), this will fail:

>>> mask = city2 > 50
>>> city2.iloc[mask]
Traceback (most recent call last):

ValueError: ilocation based boolean indexing cannot use an indexable as a mask

We can convert the mask to a NumPy array or Python list and the . iloc selection will work:
>>> city2.iloc[mask.to_numpy ()]

Nissan 81
Toyota 81
Toyota 81
Ford 74
Nissan 84
Tesla 140
Tesla 115
Tesla 104
Tesla 98
Toyota 55

Name: cityB8, Length: 236, dtype: inté64

>>> city2.iloc[list(mask)]

Nissan 81
Toyota 81
Toyota 81
Ford 74
Nissan 84

75

10. Indexing Operations

Tesla 140
Tesla 115
Tesla 104
Tesla 98
Toyota 55

Name: cityB8, Length: 236, dtype: inté64

Finally, you can pass in a function to .iloc that accepts the series on which it is called. This
function can return any of the above options for .iloc. I have not found a real-life use case for
passing in a function. Because I would use such functionality to pull out values on the result of a
chained method call, using .1loc is preferred as it accepts a boolean array.

10.5 Heads and Tails

The .head and .tail methods are useful for pulling out values at the start or end of the series,
respectively. These methods are used to quickly inspect a chunk of the data. The following code
inspects the three values at the start and end:

>>> ¢ity2.head(3)

Alfa Romeo 19

Ferrari 9

Dodge 23
Name: city08, dtype: inté64

>>> city2.tail(3)

Subaru 18
Subaru 18
Subaru 16

Name: city68, dtype: inté64

10.6 Sampling

While the previous two methods allow us to inspect the data, sampling the data can be a better
choice. Often the first few entries of the data may be incomplete, test data, or not representative
of all of the values. Sampling might be a better option. The code below randomly pulls out six
values:

>>> city2.sample(6, random state=42)

Volvo 16
Mitsubishi 19
Buick 27
Jeep 15
Land Rover 13
Saab 17

Name: cityB8, dtype: int64

10.7 Filtering Index Values

The .filter method will filter index labels by exact match, substring, or regular expression. These
are controlled with the mutually exclusive items, like, and regex parameters, respectively.
Note that exact match (with items) fails with duplicate index labels:

76

10.8. Reindexing

>>> city2.filter(items=['Ford', 'Subaru'])
Traceback (most recent call last):

ValueError: cannot reindex from a duplicate axis

Using like we can do substring matches:
>>> city2.filter(like="'rd")

Ford 18
Ford 16
Ford 17
Ford 17
Ford 15
Ford 26
Ford 19
Ford 21
Ford 18
Ford 19

Name: cityB8, Length: 3371, dtype: inté4
We can also specify a regular expression to match against index values:
>>> city2.filter(regex="'(Ford)|(Subaru)")

Subaru 17
Subaru 21
Subaru 22
Ford 18
Ford 16
Subaru 19
Subaru 20
Subaru 18
Subaru 18
Subaru 16

Name: cityB8, Length: 4256, dtype: inté64

10.8 Reindexing

The .reindex method allows you to pull out values by index label. It will conform the series or
return a series with the order of the index labels provided. Unlike .1loc and .filter, you can pass in
labels that are not in the index, and it will not throw an error. Rather it will insert missing values.
However, the .reindex method does not like duplicate index labels in the series and will throw an
error if you have them:

>>> city2.reindex (['Missing', 'Ford'])
Traceback (most recent call last):

ValueError: cannot reindex from a duplicate axis

Note that even though this will not work with duplicate index labels in a series, you can pass
in the index label multiple times in the call and it will repeat that index (city has a numeric index
that is unique):

>>> city mpg.reindex([0,0, 16, 20, 2 660 _060])

0 19.0
0 19.0
10 23.0

77

10. Indexing Operations

The .reindex Method for Series

S s.reindex(['Paul', 'John', 'Eric'])
ValueError exception!

Paul 145 Due to duplicate labels

John 142

George 38

Ringo 13

George 2
s.iloc[:-1].reindex(['Paul', 'John', 'Eric'])

Paul 145.00

R _ John 142.00
eturns a series! Eric nan

Figure 10.11: The .reindex method will conform an index to a new index.

20 14.0
2006000 NaN
Name: city68, dtype: float64
This method is a lifesaver if you have series that have portions of index labels that are the same
and you want one to have the index of the other:
pd.Series([10,20,30], index=['a', 'b', 'c'D)
pd.Series([15,25,35], index=['b', 'c', 'd'])

>>> g1
>>> g2

>>> g2

b
c
d

15
25
35

dtype: int64

>>> s2.reindex(s1.index)

a
b
c

NaN
15.0
25.0

dtype: floaté64

78

Method

Description

s.rename(index=None, *, level=None,
errors='ignore')

s.index
s.reset_index(level=None, drop=False,
name=None, inplace=False)

Return a series with updated .name attribute if index is
a scalar. If index is a function series, or dictionary,
return a series with updated index mapped from
input (functions work on index name, series and
dictionaries map the index name to a new value).

Returns the index of the series.

Return a dataframe (or series when drop=True) with a
new integer index.

10.9. Summary

s.sort_index(axis=0, level=None, Return a series with the index sorted. The kind option
ascending=True, inplace=False, may be 'quicksort', 'mergesort' (stable), or
kind="'quicksort', na_position='last', 'heapsort'. na_position indicates the location of
sort_remaining=True, NaNs and may be 'first' or 'last'.
ignore_index=False, key=None)

s.loc[idx] Slice series by names. idx can be a scalar (pull out

value at that name), list of names, slice with names
(including end position), a boolean array, an index,
or a function (that accepts the series and returns
one of the previous items).

s.iloc[idx] Slice series by index position. idx can be a scalar (pull
out value at that index), list of indices, slice with
index positions (half-open including start but not
end index), a list of booleans, or a function (that
accepts the series and returns one of the previous

items).
s.head(n=5) Return a series with the first n values.
s.tail(n=b) Return a series with the last n values.
s.sample(n=None, frac=None, Return a series with n random entries. Can also
replace=False, weights=None, specify a fraction with frac (if frac > 1 specify
random_state=None, axis=None) replace=True).
s.filter(items=None, like=None, Return a series with index values from items list,
regex=None, axis=None) matching like substring, or when regex (regular
expression) search matches.
s.reindex(index=None, method=None, Return a series with a conformed index.

copy=True, level=None, limit=None,
tolerance=None)

Table 10.1: Indexing operation, methods, and properties

10.9 Summary

The index is a fundamental structure of pandas. Both a series and dataframe have an index. To get
the most out of pandas, itis important that you understand how to manipulate the index. We often
have two pandas objects, and if we want to perform operations on them, we might need them to
have similar index values. For example, when we add a series to another series, pandas will align
the index values and add the corresponding values for each index entry.

We also saw that we could index off of .1loc and .iloc to pull out values by name and position,
respectively. You will use both of these attributes often when dealing with pandas dataframes and
series.

10.10 Exercises
With a dataset of your choice:

1. Inspect the index.
2. Sort the index.

3. Set the index to monotonically increasing integers starting from 0.

79

10. Indexing Operations

4. Set the index to monotonically increasing integers starting from 0, then convert these to the
string version. Save this a s2.

Using s2, pull out the first 5 entries.
Using s2, pull out the last 5 entries.

Using s2, pull out one hundred entries starting at index position 10.

N O

Using s2, create a series with values with index entries '20', '10', and '2'.

80

Chapter 11

String Manipulation

In this chapter, we will explore series that have string data. String data is commonly used to
hold free-form text, semi-structured text, categorical data, and data that should have another type
(typically numeric or datetime). We will look at common operations of textual data.

11.1 Strings and Objects

Before pandas 1.0, if you stored strings in a series the underlying type of the series was object. This
is unfortunate as the object type can be used for other series that have Python types in them (such
as a list, a dictionary, or a custom class). Also, the object type is used for mixed types. If you have
a series that has numbers and strings in it, the type is also object.

Pandas 1.0 introduced the new 'string' type. In addition to being more explicit than object, it
supports missing values that are not NaN.

The make column has an object type by default:

>>> make

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

You can convert it to a string type by using the .astype method:

>>> make.astype('string')

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru

81

11. String Manipulation

41143 Subaru
Name: make, Length: 41144, dtype: string

The main difference between the 'string' type and strings stored in object (and category) type
series is that the string methods return the nullable type when you use a 'string' series. If the
result of the string method is missing, pandas will use the newer types that have native pandas
nullable types. Otherwise, the behavior is similar.

11.2 Categorical Strings

If you have low cardinality string columns, consider using a categorical type for them. You will
have access to many of the same string manipulation methods (though some are not available in
this case). The main advantage here is memory savings and performance improvements, as the
operations need to be done only on the individual categories and not each value in the series:

>>> make.astype('category')

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: category

Categories (136, object): [AM General, ASC Incorporated,
Acura, Alfa Romeo, ..., Volvo, Wallace Environmental,
Yugo, smart]

We will dive into categories later.

11.3 The .str Accessor

The object, 'string', and 'category' types have a .str accessor that provides string manipulation
methods. Most of these methods are modeled after the Python string methods. If you are adept
at the Python string methods, many of the pandas variants should be second nature. Here is the
Python string method . lower:

>>> 'Ford'.lower ()
'ford'

And here is the pandas method . lower that works on a series:

>>> make.str.lower ()

0 alfa romeo
1 ferrari
2 dodge
3 dodge
4 subaru
41139 subaru
41140 subaru
41141 subaru
41142 subaru

82

11.3. The .str Accessor

String Methods for Series

data
1 " 1 Suz
2 john (data g \IJ:(::g
3 fred .str.capitalize())[—, George
4 george
\
(data 1 1
.str.find("e")) 2 1
3 2
4 1
(data
.str
.startswith('f'))
1 False (data
2 False .str 1 han
3 True .extract(r'([a-e])',| 2 | nan
4 False expand=False)) 3 e
4 e

Figure 11.1: The .str accessor will allow you to manipulate strings in a series much like you can manipulate
Python strings.

83

11. String Manipulation

41143 subaru
Name: make, Length: 41144, dtype: object

Here is another example of the Python .find method:

>>> 'Alfa Romeo'.find('A")
0

And here is the pandas version:
>>> make.str.find('A")

0 0
1 -1
2 -1
3 -1
4 -1
41139 -1
41140 -1
41141 -1
41142 -1
41143 -1

Name: make, Length: 41144, dtype: int64

Many methods are common to both strings and pandas series. They are found in a table later
in this chapter.

11.4 Searching

There are a few methods that leverage regular expressions to perform searching, replacing, and
splitting. This book will not go deep into regular expressions as there are books solely devoted to
that subject.

To find all of the non alphabetic characters (disregarding space), you could use this code:

>>> make.str.extract(r'(["a-z A-Z])")

0
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
41139 NaN
41140 NaN
41141 NaN
41142 NaN
41143 NaN

[41144 rows x 1 columns]

This returns a dataframe that has mostly missing values and by inspection is not very useful.
If we collapse it into a series (with the parameter expand=False), we can chain the .value_counts
method to view the count of non-missing values:
>>> (make

.str.extract(r'(["a-z A-Z])', expand=False)
.value_counts()

)
- 1727

84

11.5. Splitting

46
, 9
Name: make, dtype: inté64

Hint

I like to use a similar technique to the above to search for non-numeric characters that pop up
from reading a CSV file. If a column in a CSV file contains non-numeric characters, use the
following code to find them:
(col

.str.extract(r'(["0-9.])"', expand=False)

.value counts()

)

After diagnosing the bad actors, you can replace them or drop them and convert the column
to the appropriate numeric type.

11.5 Splitting

When dealing with survey data, you may come across binned numeric values. The survey probably
had a drop-down of different ranges. It might have said, what is your age? And have options for
20-29, 30-39, 40-49, etc. Those survey results come in as strings because pandas cannot handle the
dash. Hence we cannot perform math operations on the ages, like calculating the minimum or
mean values.

Here is an example of pulling out the value before the dash and converting it to a number using
the .split method:

>>> age = pd.Series(['0-10', '11-15', '11-15', '61-656', '46-50'])

>>> age
0 0-10
1 11-15
2 11-15
3 61-65
4 46-50
dtype: object

If we just call .split on the series, we get back a series that has lists in it:
>>> age.str.split('-")

0 [0, 10]
1 [11, 15]
2 [11, 15]
3 [61, 65]
4 [46, 50]
dtype: object

Having a series with a Python list makes it hard to manipulate the data. To remedy that, we can
provide the expand=True parameter to retrieve a dataframe. If I just wanted to use the first column
as an age value, I could chain together an .1iloc operation to pull out the first column, and then
convert the strings to integers with the .astype method:

>>> (age
.str.split('-', expand=True)
.iloc[:,0]
.astype(int)
)

85

11. String Manipulation

0 0
1 11
2 11
3 61
4 46
Name: 0, dtype: inté64

This will bias our ages towards the low side. If you wanted to just use the tail end of the binned
value, you can use the .slice method or just do a slice operation off of .str:

>>> (age
.str.slice(-2)
.astype(int)

e)

0 10

1 15

2 15

3 65

4 50

dtype: inté64

>>> (age
.str[-2:]
.astype(int)

)

0 10

1 15

2 15

3 65

4 50

dtype: inté64

We can take the average of the bin ranges using this code:

>>> (age
.str.split('-"', expand=True)
.astype(int)

.. .mean(axis="'columns ')

e)

0 5.0

1 13.0

2 13.0

3 63.0

4 48.

dtype: floaté64

We have not really dived into dataframes, but in short, the above will convert the columns
to numbers, then apply the .mean method across each row (manipulating across the row is
accomplished with the axis='columns' parameter). This will make more sense when we discuss
the dataframe axis.

Finally, if you wanted to get a random number between the ranges, you could do this:
>>> import random

>>> def between(row):
return random.randint(*row.values)

>>> (age

.str.split('-"', expand=True)
.astype(int)

86

11.6. Optimizing .apply with Cython

.apply(between, axis='columns')

o)

0 7

1 15

2 15

3 63

4 49
dtype: int64

11.6 Optimizing .apply with Cython

The previous example uses .apply and by now, you should know that I'm generally against that
method because it is slow. Let’s divert from strings for a minute and look at making it quicker
using Cython.

Cython is a superset of Python that can compile to native code. To enable it in Jupyter, you will
need to run the following cell magic:

fload_ext Cython

Then you can define functions with Cython. I'm going to ”cythonize” the between function as a
first step:
%%cython
import random

def between cy(row):
return random.randint(*row.values)

When I benchmark this it is no faster than my current code. If you add types to Cython code,
you can get a speed increase. I'll try that here:
%%cython
import random
cpdef int between _cy3(int x, int y):
return random.randint(x, y)

Because I'm calling .apply across the columns axis, the between function needs to work on a row
(converted into a series) of data. I'm going to use a lambda to pull apart the series and then call
between_cy3:

(age
.str.split('-', expand=True)
.astype(int)

.apply(lambda row: between cy3(row[0], row[1]), axis=1)

)

I'm still not getting much of a boost. Using prun I see that I'm spending a good deal of time
doing index operations (row[8] and row[1]):
%prun -1 10 (age.str.split('-', expand=True).astype(int)
.apply(lambda row: between cy3(row[0], row[1]), axis=1))

31786620 function calls (31786601 primitive calls) in 12.334 seconds

Ordered by: internal time
List reduced from 308 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)

1000000 1.533 0.000 5.190 0.000 series.py:928(__getitem_)
1000000 0.708 0.000 2.908 0.000 series.py:1034(_get value)

87

11. String Manipulation

1000006 0.674 0.000 2.075 0.000 generic.py:5489(_ _setattr)
500001 0.607 0.000 3.311 0.000 apply.py:937(series_generator)
1000060 0.591 0.000 1.390 0.000 base.py:5175(get values for_loc)
1000000 0.534 0.000 0.809 0.000 range.py:379(get_loc)

500006 0.501 0.000 0.501 0.000 {method 'split' of 'str' objects}
500000 0.494 0.000 0.557 0.000 managers.py:1712(set_values)
500003 0.461 0.000 1.327 0.000 series.py:627(name)

500000 0.439 0.000 6.832 0.000 <string>:1(<lambda>)

I'm going to change the plan of attack and just send in two NumPy arrays and return a NumPy
array:

%%cython
cimport numpy as np
import numpy as np
import random
cpdef np.ndarray[int] apply _between cy4(np.ndarray[int] x, np.ndarray[int] y):
cdef np.ndarray[int] res = np.empty(len(x), dtype='int32"')
for i in range(len(x)):
res[i] = random.randint(x[i], y[i])
return res

I can run this with the following code and it runs 8x faster on a dataset with 500,000 values:
(age
.str.split('-", expand=True)
.astype(int)
.pipe(lambda df : apply between cy4(df .iloc[:, 0].to _numpy(dtype='int32'),
df .iloc[:, 1].to numpy(dtype="int32"')))

11.7 Replacing Text

Both the series and the .str attribute have a . replace method, and these methods have overlapping
functionality. If I want to replace single characters, I typically use .str.replace, but if I have
complete replacements for many of the values I use .replace.

If T wanted to replace a capital “A” with the Unicode letter a with a ring above it, I could use
this code:

>>> make.str.replace('A', 'A")
0 A1fa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

This would replace all the ”A”s in Audi, Acura, Ashton Martin, Alfa Romeo etc.
However, the version below, calling .replace directly on the series, does not replace anything
because it tries to replace the whole string 'A', and there are no makes with that name:

88

11.7. Replacing Text

>>> make.replace('A', 'A")
0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

You can use a dictionary to specify complete replacements. (This is very explicit, but it might
be problematic if you had 20,000 numeric values that had dashes in them, and you wanted to strip
out the dashes for all 20,000 numbers. You would have to create a dictionary with all the entries,
tedious work.):

>>> make.replace ({'Audi "Rudi', '"Acura': 'Acura',
"Ashton Martin': 'Ashton Martin',
"Alfa Romeo': 'Alfa Romeo'})

0 A1fa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

Alternatively, you can specify that you mean to use a regular expression to replace just a portion
of the strings with the regex=True parameter:

>>> make.replace('A', 'A', regex=True)
0 k1fa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

I use .str.replace to replace substrings, and .replace to replace mappings of complete strings.

89

11.

String Manipulation

Note

In pandas, we often refer to vectorized operations.
very optimized for dealing with strings.

It turns out that pandas is not
The string operations are not vectorized. I'm

generally against using the .apply method because unless you use NumPy functions, you lose
vectorization, and operations take a slow path through Python rather than SIMD instructions
on the CPU. Because strings are already slow, this is one place where I'm ok with .apply.

There are a bunch of other string operations. Below is a table with the string methods.

90

Method Description
.str.capitalize() Capitalize strings
.str.casefold() Lowercase Unicode/ caseless strings.

.str.cat(others=None, sep='",
na_rep=None, join='"inner')

.str.center(width, fillchar=' ')

.str.contains(pat, case=True, flags=0,
na=np.nan, regex=True)

.str.count(pat, flags=0)

.str.decode(encoding)

.str.encode(encoding)
.str.endswith(pat, na=np.nan)
.str.extract(pat, flags=0, expand=True)

.str.extractall(pat, flags=0)

.str.find(sub, start=None, end=None)
.str.findall(pat, flags=0)
.str.get(i)

.str.get _dummies(sep="[")

.str.index(sub, start=None, end=None)

.str.isalnum()
.str.isalpha()
.str.isdecimal()
.str.isdigit()
.str.islower()
.str.isnumeric()
.str.isspace()

If others is None, return a string with values separated
by sep. Otherwise, align the index (if others series)
and concatenate values.

Center align strings

Return a boolean array if pat matches values.

Return series with the count of how many times pat
occurs in each value.

Works with bytestrings to decode them to Unicode
strings.

Encode Unicode string to bytestring.

Return boolean array if value ends with pat.

Return a dataframe with the first match from each
regular expression capture group in its own
column (use named groups for column names).
Returns a series if expand=False.

Return a dataframe with all matches from each
regular expression capture group in its own
column (use named groups for column names).
The dataframe has a multiindex, where the inner
index is named match and has match number.

Return the lowest index of sub. -1 if not found.

Return a series with a list of matches for each value.

Return a series with the result of val[i] for each
value (val) in the series.

Return a dataframe with each value in its own
column and a 0/1 indicating if the value is
absent/appeared for that index label. If a string
has multiple values they can be separated with sep.

Return the lowest index of sub. ValueError if not
found.

Return boolean array if characters are alphanumeric.

Return boolean array if characters are alphabetic.

Return boolean array if characters are decimal.

Return boolean array if characters are digits.

Return boolean array if characters are lowercase.

Return boolean array if characters are numeric.

Return boolean array if characters are whitespace.

11.7. Replacing Text

.str.istitle()
.str.isupper()
.str.join(sep)

.str.1en()

.str.1just(width, fill=" ")

.str.lower()

.str.1strip(to_strip=None)

.str.match(pat, case=True, flags=0,
na=np.nan)

.str.normalize(form)

.str.pad(width, side='left', fill='"')

.str.partition(sep, expand=True)

.str.repeat(repeats)

.str.replace(pat, repl, n=-1, case=True,

flags=0, regex=True)

.str.rfind(sub, start=None, end=None)
.str.rindex(sub, start=None, end=None)
.str.rjust(width, fill="' ")
.str.rpartition(sep, expand=True)

.str.rsplit(pat, n=-1, expand=False)
.str.rstrip(to_strip=None)

.str.slice(start=None, stop=None,
step=None)

.str.slice_replace(start=None, stop=None,
repl=None)

.str.split(pat, n=-1, expand=False)

.str.startswith(pat, na=np.nan)
.str.strip(to_strip=None)

.str.swapcase()

.str.title()
.str.translate(table)

.str.upper()

Return boolean array if characters are titlecase.

Return boolean array if characters are uppercase.

Given a series with a list of strings in it, join each
element with sep.

Return a series with length of each value (works with
lists or collections).

Return a left justified series.

Return a lowercase series.

Return a series with left stripped to_strip
(whitespace default).

Return a boolean array if pat matches values
(anchored at the beginning). Use .str.contains to
match anywhere in the string. (Use .str.extract to
pull out the string.)

Return Unicode normal form for series. form can be
'NFC', '"NFKC', 'NFD', or 'NFKD"'.

Return a padded series of length width. side can be
'left', 'right', or 'both'.

Return a dataframe with three columns: element
before first sep, the sep, and the part after.

Return a series with values repeated repeats times.
repeats can be a scalar or list.

Return a series where pat is replaced by repl. n is the
number of times to replace a value. repl can be a
string or a callable that takes a match object and
returns a string.

Return highest index of sub. -1 if not found.

Return highest index of sub. ValueError if not found.

Return a right justified series.

Return a dataframe with three columns: element
before last sep, the sep, and the part after.

Return a Series (if expand=False) with a list of values
split from the right side limited to n splits.

Return a series with rightstripped to_strip
(whitespace default).

Return a series. Equivalent to s[start:stop:step].

Return a series with slice replaced by the value of
repl.

Return a Series (if expand=False) with a list of values
split by sep limited to n splits.

Return boolean array if value starts with pat.

Return a series with left and right stripped to_strip
(whitespace default).

Return swapcase series.

Return titlecase series.

Return series using a dictionary table to replace
characters. table maps code points to new code
points (numbers not strings). Keys mapped to None
are deleted.

Return uppercase series.

91

11. String Manipulation

.str.wrap(width) Return a line wrapped series limited to width.
.str.zfill(width) Return a series limited to width left padded with '0'.
Table 11.1: String methods

11.8 Summary

The object, 'string', and 'category' type series all can be used to store string data. They all have
the .str accessor. If you are familiar with Python strings, you get much of the same functionality.
In addition, there is the ability to manipulate with regular expressions.

11.9 Exercises
With a dataset of your choice:

1. Using a string column, lowercase the values.

Using a string column, slice out the first character.

Using a string column, slice out the last three characters.

Using a string column, create a series extracting the numeric values.

Using a string column, create a series extracting the non-ASCII values.

AN L T i

Using a string column, create a dataframe with the dummy columns for every character in
the column.

92

Chapter 12

Date and Time Manipulation

Pandas allows you to create series with date and time information in them. In this chapter, we will
explore common operations that you will need to perform with date data.

12.1 Date Theory

Let’s talk about dates in brief. Coordinated Universal Time (UTC) is the time standard at 0 degrees
longitude. It has an excellent property, that it is monotonically increasing. I live in Salt Lake City,
Utah, the America/Denver timezone, which is 6 or 7 hours offset of UTC depending on the time of
year.

In short, a timezone may contain one or more offsets (depending on if they observe daylight
savings time or political whimsy). There is a standardized format, ISO 8601, for representing dates.
It does not include the timezone but optionally an offset.

A note on timezone names. The public domain timezone database (also known as the Olsen
database) from iana.org provides code and data regarding timezones and their history. From their
documentation:

Timezones are typically identified by continent or ocean and then by the name of the
largest city within the region containing the clocks. For example, America/New_York
represents most of the US eastern time zone; America / Phoenix represents most of Ari-
zona, which uses mountain time without daylight saving time (DST); America/Detroit
represents most of Michigan, which uses eastern time but with different DST rules in
1975; and other entries represent smaller regions like Starke County, Indiana, which
switched from central to eastern time in 1991 and switched back in 2006.

https:/ /data.iana.org/ time-zones/ tz-link.html

Getting the correct timezone name is important and might be confusing or difficult. As I said,
I live in Salt Lake City. If I search for “Timezone for Salt Lake City”, I get “Mountain Daylight
Time” or "GMT-6". Neither of which is a timezone. You might also see “US/Mountain”, "MST”,
or "MDT”. These are not timezones either. These are deprecated names or offsets. The correct
timezone name is ” America/Denver”. However, many applications support erroneous names.

I recommend prefacing your search with “IANA” (ie. “"TANA Timezone for Salt Lake City”)
and then double checking your result in this Wikipedia article (which shows deprecated names)®.

8 https:/ /en.wikipedia.org/wiki/List_of_tz_database_time_zones

93

https://data.iana.org/time-zones/tz-link.html
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

12. Date and Time Manipulation

America/Denver Timezone

Mar 8, 2015 Nov 1, 2015

8:59 am UTC 8:00 am UTC

MST (-07:00) o T
MDT (-0 6:00) 40 AN / / 159 apy o,

7:59 am UTC

9:00 am UTC

2:00-2:59 are imaginary times 1:00am MDT-1:59am MST are ambiguous times

Figure 12.1: When daylight savings begins in the spring, it creates imaginary times. When daylight savings
ends in the fall, there are ambiguous times (unless you include the offset).

It is important to have the offset information as well. Timezones that have daylight savings
time can have “ambiguous time” in the fall when the time goes back. For example, in Salt Lake on
Nov 1, 2015 after 1:59 AM (MDT), the clock goes to 1:00 AM (MST). On that date there are two 1:30
AMs. One at MDT and another an hour later at MST.

For this reason, if you are dealing with local times, you will want three things: the time, the
timezone, and an offset. If you are only concerned with duration, you can just use UTC time or
seconds since UNIX epoch.

Let’s introduce a few more terms before jumping to an example. A time without a timezone or
offset is called “naive” time. A time specified in local time is also called ”civil time” or "wall time”.

UTC time is unambiguous. It does not repeat.

Naive time is ambiguous. 2:37 PM happens multiple times per day for each timezone.

1:29 AM US/Mountain might seem specific enough, but it is context-dependent. On the first
Sunday in November, you also need offset information because it is ambiguous. There is 1:29 AM
MDT, then after 1:59 AM MDT comes 1:00 AM MST, and there is another 1:29 AM for MST!

A general recommendation for programmers is to store dates in UTC times and then convert
them to local time as needed. The ISO 8601 format is not sufficient to store precise local dates as
it supports offset but not timezone. If you need local times I suggest you store one of these two
options:

e UTC date and timezone

e [.ocal date, offset, and timezone

Note

The pandas library can support dates stored in UTC values using the datetime64[ns] type. It
also supports local times from a single timezone. It appears to (and by appear, I mean the
operation goes without failure) support multiple timezones in a single series. However, the
underlying datatype will be a pd. Timestamp object that does not support the .dt accessor.

If you have time data and you need to deal with multiple timezones, I would probably break
up the data by timezone, put each timezone in its own dataframe or series.

94

12.2. Loading UTC Time Data

12.2 Loading UTC Time Data

Here is a series of strings with UTC dates. Let’s convert it to a date series. You need to remember
to pass the utc=True parameter to pd.to_datetime:

>>> col = pd.Series(['2015-03-08 08:00:00+00:00",
'2015-03-08 08:30:00+00:00"',
'2015-03-08 09:00:00+00:00"',
'2015-03-08 09:30:00+00:00"',
'2015-11-01 06:30:00+00:00"',
'2015-11-01 07:00:00+00:00"',
'2015-11-01 07:30:00+00:00"',
'2015-11-01 08:00:00+00:00"',
'2015-11-01 08:30:00+00:00"',
'2015-11-01 08:00:00+60:00"',
'2015-11-01 08:30:00+00:00',
'2015-11-01 09:00:00+00:00"',
'2015-11-01 09:30:00+00:00"',
'2015-11-01 10:00:00+00:00'])

>>> utc_s = pd.to _datetime(col, utc=True)
>>> utc_s

2015-03-08 08:00:00+00:00

2015-03-08 08:30:00+00:00

2015-03-08 09:00:00+00:00

2015-03-08 09:30:00+00:00

2015-11-01 06:30:00+00:00

S w2 o

9 2015-11-01 08:00:00+00:00
10 2015-11-01 08:30:00+00:00
11 2015-11-01 09:00:00+00:00
12 2015-11-01 09:30:00+00:00
13 2015-11-01 10:00:00+00:00
Length: 14, dtype: datetime64[ns, UTC]

Notice the type of the result. It indicates that the dates are stored as UTC. Once you have
converted a series into a datetime64[ns] object, you have the ability to leverage the .dt attribute.
Let’s convert this series to the America/Denver timezone:

>>> utc_s.dt.tz convert('America/Denver')
2015-03-08 01:00:00-07:00
2015-03-08 01:30:00-07:00
2015-03-08 03:00:00-06:00
2015-03-08 03:30:00-06:00
2015-11-01 00:30:00-06:00

SN Lo

9 2015-11-01 61:00:00-07:00
10 2015-11-01 01:30:00-07:00
11 2015-11-01 62:00:00-07:00
12 2015-11-01 62:30:00-07:00
13 2015-11-01 03:00:00-07:00
Length: 14, dtype: datetime64[ns, America/Denver]

Note that if you have data with offsets that are not 00:00, you can still use the same code to load
the data:

>>> s = pd.Series(['2015-03-08 01:00:00-07:00"',
'2015-03-08 01:30:00-07:00"',
'2015-03-08 03:00:00-06:00",

95

12. Date and Time Manipulation

'2015-03-08 03:30:00-06:00",
'2015-11-01 00:30:00-06:00",
'2015-11-061 01:00:00-06:00",
'2015-11-01 061:30:00-06:00",
'2015-11-01 01:00:00-07:00",
'2015-11-01 01:30:00-07:00",
'2015-11-061 01:00:00-07:00",
'2015-11-061 01:30:00-07:00",
'2015-11-01 02:00:00-07:00",
'2015-11-01 02:30:00-07:00",
'2015-11-01 03:00:00-07:00"'])

>>> pd.to datetime(s, utc=True).dt.tz convert('America/Denver")
2015-03-08 01:00:00-07:00
2015-03-08 01:30:00-07:00
2015-03-08 03:00:00-06:00
2015-03-08 03:30:00-06:00
2015-11-01 00:30:00-06:00

S 2o

9 2015-11-01 01:00:00-07:00
10 2015-11-01 01:30:00-07:00
11 2015-11-01 02:00:00-07:00
12 2015-11-01 02:30:00-07:00
13 2015-11-01 03:00:00-07:00
Length: 14, dtype: datetime64[ns, America/Denver]

12.3 Loading Local Time Data

If we want to load local date information, we need to have the date, the offset, and the timezone.
Let’s assume that we have localtime information in one series, and offset in another:

>>> time = pd.Series(['2615-03-08 01:00:00",
'2015-03-08 01:30:00"',
'2015-03-08 02:00:60",
'2015-03-08 02:30:00',
'2015-03-08 03:00:00"',
'2015-03-08 02:00:00"',
'2015-03-08 02:30:00"',
'2015-03-08 03:00:00"',
'2015-03-08 03:30:00',
'2015-11-01 00:30:00"',
'2015-11-01 01:00:00"',
'2015-11-01 01:30:00"',
'2015-11-01 02:60:00"',
'2015-11-01 02:30:60"',
'2015-11-01 01:00:60"',
'2015-11-01 01:30:00"',
'2015-11-01 02:00:00"',
'2015-11-01 02:30:00"',
'2015-11-01 03:00:00"'])

>>> offset = pd.Series([-7, -7, -7, -7, -7, -6, -6,
_61 _6’ _61 _61 _6’ _61 _61 _7’ _71 _71 _7; _7])

We want to apply the offset to the corresponding time. The mechanism in pandas is to use
.groupby with .transform to do this. (We will explain these in detail later in the grouping chapter.)

96

12.4. Converting Local time to UTC

The basic idea is that we group all dates from one offset together and call .dt.tz_localize on them.
We repeat this for each offset. Calling the .transform method allows us to work on a group and
then return a result in the original length of the grouped object (that has not been aggregated):

>>> (pd.to_datetime(time)
.groupby (offset)
.transform(lambda s: s.dt.tz _localize(s.name)
.dt.tz _convert('America/Denver'))

2015-03-07 18:00:07-07:00
2015-03-07 18:30:07-07:00
2015-03-07 19:00:07-07:060
2015-63-07 19:30:07-07:00
2015-03-07 20:00:07-07:00

= VI S R e)

14 2015-10-31 19:00:07-06:00
15 2015-16-31 19:30:07-06:00
16 2015-10-31 20:00:07-06:00
17 2015-10-31 20:30:07-06:00
18 2015-10-31 21:00:07-06:00
Length: 19, dtype: datetime64[ns, America/Denver]

Note that this operation did not error out and appeared to run successfully. However, it you
look closely, the offsets were incorrect and moved the minute by 7 or 6 minutes instead of the hours.
We need to use different offsets, we want them to be '-07:00' and '-06:00' respectively:

>>> offset = offset.replace({-7:'-07:00"', -6:'-06:00"})

>>> local = (pd.to_datetime(time)

.groupby (offset)

.transform(lambda s: s.dt.tz localize(s.name)

.. .dt.tz _convert('America/Denver'))
)

>>> local

2015-03-08 01:00:00-07:00

2015-03-08 01:30:00-07:00

2015-03-08 03:00:00-06:00

2015-03-08 03:30:00-06:00

2015-03-08 04:00:00-06:00

S o 2o

14 2015-11-01 01:00:00-07:00
15 2015-11-01 01:30:00-07:00
16 2015-11-01 02:00:00-07:00
17 2015-11-01 02:30:00-07:00
18 2015-11-01 03:00:00-07:00
Length: 19, dtype: datetime64[ns, America/Denver]

12.4 Converting Local time to UTC

If you have a series with local time information (stored as datetime64[ns] and not a string), you can
use the .dt.tz_convert method to change it to UTC time:

>>> local.dt.tz convert('UTC")
0 2015-03-08 08:00:00+00:00
1 2015-03-08 08:30:00+00:00
2 2015-03-08 09:00:00+00:00
3 2015-03-08 09:30:00+00:00

97

12. Date and Time Manipulation

4 2015-03-08 10:00:00+00:00

14 2015-11-01 08:00:00+00:00
15 2615-11-01 08:30:00+00:00
16 2015-11-01 09:00:00+00:00
17 2015-11-01 09:30:00+00:00
18 2015-11-01 10:00:00+00:00
Length: 19, dtype: datetime64[ns, UTC]

12.5 Converting to Epochs

If you have a series with UTC or local time information, you can get the seconds past the UNIX
epoch using this code:

>>> secs = local.view(int).floordiv(1e9).astype(int)

>>> secs

0 1425801600
1 1425803400
2 1425805200
3 1425807000
4 1425808800

14 1446364800
15 1446366600
16 1446368400
17 1446370200
18 1446372000
Length: 19, dtype: inté64

To load epoch information into UTC use the following:

>>> (pd.to_datetime(secs, unit='s"')
.dt.tz localize('UTC'))
2015-03-08 08:00:00+00:00
2015-03-08 08:30:00+00:00
2015-03-08 09:00:00+00:00
2015-03-08 09:30:00+00:00
2015-03-08 10:00:00+00:00

o - o

14 2015-11-01 08:00:00+00:00
15 2015-11-01 08:30:00+00:00
16 2015-11-01 09:00:00+00:00
17 2015-11-01 09:30:00+00:00
18 2015-11-01 10:00:00+00:00
Length: 19, dtype: datetime64[ns, UTC]

12.6 Manipulating Dates

To further demo date manipulation, I am going to read in a dataset with snowfall levels from a
local ski resort.

>>> url = 'https://github.com/mattharrison/datasets'+\
. "/raw/master/data/alta-noaa-1980-2019.csv’
>>> alta df = pd.read csv(url)

I'm going to show working with a series with date information in them. Then we will look
at a series that has dates in the index. The date series will be pulled from the DATE column.

98

12.6. Manipulating Dates

Remember that when you read a CSV, it does not convert columns to dates by default. You can use
the parse_dates parameter to try and convert to dates when reading a CSV, but the to_datetime
function is more powerful. I generally recommend messing around with dates outside of the
read_csv function:

>>> dates = pd.to datetime(alta_df.DATE)

>>> dates

0 1980-61-01
1 1980-61-02
2 1980-01-03
3 1980-01-04
4 1980-01-05

14155 2019-09-03
14156 2019-09-04
14157 2019-09-065
14158 2019-09-06
14159 2019-09-07
Name: DATE, Length: 14160, dtype: datetime64[ns]

A series with a date in it is a little boring. However, you will see dataframes with date columns
in them. Remember that a column is just a series and being able to manipulate that column as part
of a dataframe will be useful.

Note that the type of date is datetime64[ns]. This gives us some super powers. It adds a .dt
attribute to the series that allows us to perform various date manipulations.

To get the weekdays in Spanish, I can specify the appropriate locale:

>>> dates.dt.day_name('es ES')

0 Martes
1 Miércoles
2 Jueves
3 Viernes
4 Sabado
14155 Martes
14156 Miércoles
14157 Jueves
14158 Viernes
14159 Sébado

Name: DATE, Length: 14160, dtype: object

Note

To get a list of locales on Linux, run the locale command from the terminal. My output looks
like this:

$ locale -a

C

C.UTF-8

POSIX
en_US.utf8
es_ES

es _ES.is088591
spanish

Many of the attributes of the .dt attribute are properties and are not methods. Many ask me why
are they properties and not methods? A property is not parameterizable. You just get back the

99

12. Date and Time Manipulation

results. Also note, that you do not put parentheses at the end of a property (ie, you do not call it).
If you do, you will get an error stating that it is not callable.

The creators of the properties felt that there were no options to them. For example, . is_month_end
just tells you whether a day is the last of the month so it is a property. However, .strftime requires
that we parameterize it with a formatting string, so it is a method:

>>> dates.dt.is_month_end

0 False
1 False
2 False
3 False
4 False

14155 False
14156 False
14157 False
14158 False
14159 False
Name: DATE, Length: 14160, dtype: bool

Here we format the date as a string:
>>> dates.dt.strftime('%d/%m/%y")

0 01/01/80
1 02/061/80
2 03/01/80
3 04/01/80
4 05/061/80

14155 03/09/19
14156 04/09/19
14157 05/09/19
14158 06/09/19
14159 07/09/19
Name: DATE, Length: 14160, dtype: object

100

12.6. Manipulating Dates

Code Meaning Sample
%y Year (decimal) 14
%Y Year (century) 2014
%m Month (padded) 08
% Month (Abbrev locale) Aug
%B Month August
%d Day (padded) 04
%a Weekday (Abbrev locale) Mon
%A Weekday (locale) Monday
%H Hour (24 padded) 22
%I Hour (12 padded) 10
%M Minutes (padded) 25
%S Seconds (padded) 24
% AM/PM PM
%-d Day (unpadded unix*) 4

fte
fic
fx
%X
il |
fU
%j
iz
%z

0r0/
1010

Day (unpadded unix*) 4

Locale representation Mon Aug 4 22:25:24 2014
Locale date 08/04/14

Locale time 22:25:24

Week num (Mon 1st) 31

Week num (Sun 1st) 31

Day of year (padded) 216

UTC offset +0000

Time Zone MDT

Percent sign %

Figure 12.2: Table of strftime codes

Below is a table of .dt methods and properties.

Method

Description

.ceil(freg=None,
ambiguous=None,
nonexistent=None)

.date

.day

.day_name(locale='en us')

.dayofweek

.dayofyear

.days_in_month

.daysinmonth

.floor(freg=None,
ambiguous=None,
nonexistent=None)

.hour

.is_leap_year

.is_month_end

.is_month_start

.is_quarter_end

.is_quarter_start()

.is_year_end

Return ceiling according to offset alias in freg. The nonexistent
parameter controls DST time issues.

Property with a series of Python datetime.date objects.
Property with a series of day of month.
Return the string day of week.

Property with a series of date of week as number (0 is Monday).

Property with a series of day of the year.

Property with a series of number of days in month.

Property with a series of number of days in month.

Return floor according to offset alias in freq. The nonexistent
parameter controls DST time issues.

Property with a series of hour of date.

Property with a series of booleans if date is leap year.
Property with a series of booleans if date is end of month.
Property with a series of booleans if date is start of month.
Property with a series of booleans if date is end of quarter.
Property with a series of booleans if date is start of quarter.
Property with a series of booleans if date is end of year.

12. Date and Time Manipulation

.is_year start

.round(freg=None,

ambiguous=None,
nonexistent=None)

.second
.strftime(date_format)

.time
.timetz

.to_period(freq)
.to_pydatetime()
.tz
.tz_convert(tz)
.tz localize(tz,

ambiguous=None,
nonexistent=None)

Property with a series of booleans if date is start of year.

.microsecond Property with a series of microseconds of date.
.minute Property with a series of minutes of date.

.month Property with a series of month of date (numeric).
.month_name(locale="en us"') Return a series of month of date (string).

.nanosecond Property with a series of nanoseconds of date.
.normalize() Return a series of dates converted to midnight.
.quarter Property with series of quarter of date (numeric 1-4).

Return round according to fixed frequency (cannot be end like
'ME') in freq. The nonexistent parameter controls DST time
issues.

Property with a series of seconds of date (numeric).

Return a series with string dates. Formatted using strftime
format codes.

Property with a series of Python datetime.time objects.

Property with a series of Python datetime.time objects with
timezone information.

Return a series with pandas Period objects.

Return a numpy array with datetime.datetime objects.

Property with timezone.

Convert from one timezone aware series to another.

Convert from naive to timezone aware.

.week Property with a series of week of date (numeric 1-53).

.weekday Property with a series of date of week as number 0 is Monday.
.weekofyear Property with a series of week of date (numeric 1-53).

.year Property with a series of year of date.

Table 12.1: .dt methods and Properties

12.7 Summary

In the chapter, we explored converting series into date series. We discussed timezones, offsets, local
time, and UTC time. If you have UTC time, you can convert it into a timezone. If you have local
time, you will need an offset information to convert it into a timezone (as many local times have
ambiguous times). If you have a series with multiple timezone dates in it, recommend leaving it
as UTC because pandas will not allow you to work on the dates unless you split them out into one
timezone.

12.8 Exercises
With a dataset of your choice:

1. Convert a column with date information to a date.
2. Convert a date column into UTC dates.
3. Convert a date column into local dates with a timezone.

4. Convert a date column into epoch values.

102

12.8. Exercises

5. Convert an epoch number into UTC.

103

Chapter 13

Dates in the Index

If you have dates in the index, you can do some powerful manipulation and aggregation of your
data.

We are going to shift gears and look at data that has a date as an index. We will look at the
amount of snow that fell each day at the ski resort:

>>> gnow = (alta df

. SNOW

. .rename (dates)
.)

>>> snow

1980-01-01

1980-01-62

1980-01-03

1980-01-04

1980-01-05

OO0 = wmMN
[I <> BN < B «» B «»)

2019-09-03
2019-09-04
2019-09-05
2019-09-06
2019-09-07 0.
Name: SNOW, Leng

[« I «» I «» B «» I
t OO0 0o

h: 14160, dtype: float64

13.1 Finding Missing Data

Let’s look for missing data. There are a few methods that help with dealing with missing data in
time data. We can check is any values are missing using .any:

>>> snow.isna().any()
True

There is missing data. Let’s look where it is:

>>> snow[snow.isna()]
1985-07-30 NaN
1985-09-12 NaN
1985-09-19 NaN
1986-02-07 NaN
1986-06-26 NaN

2017-04-26 NaN

105

13. Dates in the Index

2017-09-20
2017-10-02
2017-12-23
2018-12-03
Name: SNOW,

NaN
NaN
NaN
NaN

Length: 365, dtype: floaté64

With a date index, we can provide partial date strings to the .loc indexing attribute. This will
let us inspect around the missing data and see if that gives us any insight into why it is missing;:

>>> snow.loc['1985-09':'1985-09-20"]

1985-09-01
1985-09-02
1985-09-03
1985-09-04
1985-09-05

1985-09-16
1985-09-17
1985-09-18
1985-09-19
1985-09-20

0.

(<= I «» I < B <]

a

o=o00 © -

0

(<= B s I < B <]

oOo=Z2o0 0 0o

Name: SNOW, Length: 20, dtype: floaté64

13.2 Filling In Missing Data

Often we have time series data with missing values. For example, in the snow data, the value for
the date 1985-09-19 is missing. (See previous code.)
This value looks like it could be filled in with zero (as this is the end of summer):

>>> (snow

.loc['1985-09"':'1985-09-20"]
.fillna(0)

v)

1985-09-01
1985-09-02
1985-09-03
1985-09-04
1985-09-05

1985-09-16
1985-09-17
1985-09-18
1985-09-19
1985-09-20
Name: SNOW,

[<= B «s I <> i «» B <]

[« B «» I < B «» I}

0.
Leng

[<= B «s I <> i« B <>

Gt OO0 00O

h: 20, dtype: float64

However, these values in January, the middle of the winter, might not be zero. (It is not clear
to me why these values are missing. Did a sensor fail? Did someone forget to write down the
amount? Was it really zero?) The best way to do with missing data is the talk to a subject matter
expert and determine why it is missing:

>>> snow.loc['1987-12-30"':'1988-01-10"]

1987-12-30
1987-12-31
1988-01-01
1988-01-02
1988-01-03

106

6.
5.
a

o o=

0
0

o o=

13.3. Interpolation

1988-01-06
1988-01-07
1988-01-08
1988-01-09
1988-01-10
Name: SNOW, Length: 12, dtype: float64

N o1 o b~ o

.0
.0
.0
.0
.0

Pandas has various tricks for dealing with missing data. Let’s demonstrate them with the
missing data from the end of December through January. Notice what happens to the January
1 value as we demo these.

We can do a forward fill or back fill using .ffill and .bfill respectively:

>>> (snow
.loc['1987-12-30"':'1988-01-10"]
FFI11()

)

1987-12-30 6.0

1987-12-31 5.0

1988-01-01 5.0

1988-01-02 0.0

1988-01-03 0.0

1988-01-06 6.0

1988-01-07 4.0

1988-01-08 9.0

1988-01-09 5.0

1988-01-10 2.0

Name: SNOW, Length: 12, dtype: float64

>>> (snow
.loc['1987-12-30"':'1988-01-10"]
.bfill()

cee)

1987-12-30 6.0

1987-12-31 5.0

1988-01-01 0.0

1988-01-02 0.0

1988-01-03 0.0

1988-01-06 6.0

1988-01-07 4.0

1988-01-08 9.0

1988-01-09 5.0

1988-01-10 2.0

Name: SNOW, Length: 12, dtype: float64

13.3 Interpolation

We can also interpolate using .interpolate. By default this does a linear interpolation for the
missing values:

>>> (snow

.loc['1987-12-30"':'1988-01-10"]

. .interpolate()

cee)
1987-12-30 6.0

107

13. Dates in the Index

1987-12-31 5.0
1988-01-01 2.5
1988-01-02 0.0
1988-01-03 0.0
1988-01-06 6.0
1988-01-07 4.0
1988-01-08 9.0
1988-01-09 5.0

1988-01-10 2.0
Name: SNOW, Length: 12, dtype: floaté64

We can use the code below to fill in the missing winter values (if the quarter is 1 or 4) with
interpolated values and the other values with zero. (Because the index is a datetime, we can access
.dt attributes directly on it.)

This is a good example of the .where method. Here is a truth table for winter and snow values.

Winter Snow
True (I) True (II)
False (ITI) False (IV)

When it is winter and we are missing snow values, we will interpolate. This corresponds to
sections I and IV. When it is not winter and snow values are missing we will fill in 0 (sections III
and IV). Recall that the .where method keeps values where the first parameter is True, so we invert
the conditions with ~:
>>> winter = (snow.index.quarter == 1) | (snow.index.quarter== 4)
>>> (snow

.where(~(winter & snow.isna()), snow.interpolate())
.where(~(~winter & snow.isna()), 0)

e)

1980-01-01 2.0
1980-01-02 2.5
1980-01-03 1.0
1980-01-04 0.0
1980-01-05 0.0
2019-09-03 0.0
2019-09-04 0.0
2019-09-05 0.0
2019-09-06 0.0
2019-09-07 0.0
Name: SNOW, Length: 14160, dtype: floaté64

And we can validate the values to make sure that it worked:

>>> (snow

.where(~(winter & snow.isna()), snow.interpolate())
.where(~(~winter & snow.isna()), 0)

. .loc[['1985-09-19"','1988-01-01"'1]]

e)
1985-09-19 0.0
1988-01-01 2.5

Name: SNOW, dtype: floaté64

108

13.4. Dropping Missing Values

Note

These .where statements can get confusing with double negatives. I like to work in Jupyter,
where I can quickly try code and validate the results. Please do likewise!

13.4 Dropping Missing Values

We can also just drop the missing data using the .dropna method:

>>> (snow
.loc['1987-12-30"':'1988-01-10"]
. .dropna()

cee)
1987-12-30
1987-12-31
1988-01-02
1988-01-03
1988-01-05
1988-01-06
1988-01-07
1988-01-08
1988-01-09
1988-01-10
Name: SNOW, dtype: float64

g o s~ o oo
[«» B> I «» i «» B «» I «» B «» I «» B «» B <]

nNo

Be careful with the method and only use it after talking to a subject matter expert who confirms
that it is ok to drop the data. It can be hard to tell later if the data is missing. For example, if you
plotted this data, you might not see that data was dropped unless you pay close attention.

13.5 Shifting Data

We can shift data up or down, which is useful for sequence data like time series. This method
works on any pandas series but comes in really useful with time series when we want to compare
to the previous or subsequent entry. Here is a forward and backward shift:

>>> snow.shift (1)
1980-01-01 NaN
1980-01-02 2.0
1980-01-03
1980-01-04
1980-01-065

o - W
o oo

2019-09-03
2019-09-04
2019-09-05
2019-09-06
2019-09-07 0.
Name: SNOW, Leng

[« B «» I «» i <> I}
+t OO0 00 o

h: 14160, dtype: float64

(-1
1980-01-01 3.0
1980-01-02 1.0
1980-01-03 6.0
1980-01-04 6.0
1980-01-05 1.8

109

13. Dates in the Index

2019-09-03 0.0
2019-09-04 0.0
2019-09-05 0.0
0.0
NaN

2019-09-06
2019-09-07
Name: SNOW, Length: 14160, dtype: floaté64

13.6 Rolling Average

To calculate the five day moving average, we can leverage .shift and do the following:

>>> (snow
.add(snow.shift (1))
.add(snow.shift(2))
.add(snow.shift(3))
.add(snow.shift(4))
. .div(b)

o)
1980-01-01 NaN
1980-01-02 NaN
1980-01-03 NaN
1980-01-04 NaN
1980-01-05 1.2

2019-09-03 0.0
2019-09-04 0.0
2019-09-05 0.0
2019-09-06 0.0

2019-09-07 0.0
Name: SNOW, Length: 14160, dtype: floaté64

That was a little tedious to write. Thankfully, pandas has a trick up its sleeve. Thereisa .rolling
method that allows us to specify a window size. This method returns a Rolling object that we can
apply various aggregate methods to. If we apply .mean to it, we get a very similar result to above:

>>> (snow
.rolling(5)
.mean ()
)

1980-01-01 NaN
1980-01-02 NaN
1980-01-03 NaN
1980-01-04 NaN
1980-01-05 1.2

2019-09-03 0.0
2019-09-04 0.0
2019-09-05 0.0
2019-09-06 0.0
2019-09-07 0.0
Name: SNOW, Length: 14160, dtype: floaté64

Below are methods that work on a Rolling object:

Method Description

r.agg(func=None, axis=0, *args, **kwargs) Returns a scalar if func is a single aggregation
function. Returns a series if a list of aggregations
are passed to func. (aggregate is a synonym.)

110

13.7. Resampling

.apply(func, args=None, kwargs=None)
.corr(other, method="'pearson')

.count(other, method="'pearson')
.cov(other, min_periods=None)
.max(axis=None, skipna=None, level=None,

numeric_only=None

.min(axis=None, skipna=None, level=None,

numeric_only=None)

.mean(axis=None, skipna=None,

level=None, numeric_only=None)

.median(axis=None, skipna=None,

level=None, numeric_only=None)

.quantile(g=.5, interpolation='linear"')

.sem(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.std(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.var(axis=None, skipna=None, level=None,

ddof=1, numeric_only=None)

.skew(axis=None, skipna=None,

level=None, numeric_only=None)

Apply custom aggregation function to rolling group.

Returns correlation coefficient for 'pearson’,
'spearman', 'kendall', or a callable.

Returns count of non NaN values.

Returns covariance.

Returns maximum value.

Returns minimum value.

Returns mean value.

Returns median value.

Returns 50% quantile by default. Note returns Series
if q is a list.

Returns unbiased standard error of mean.

Returns sample standard deviation.

Returns unbiased variance.

Returns unbiased skew.

Table 13.1: Rolling methods and properties

13.7 Resampling

Because this series has dates as the index, it has more super powers. We can use the .resample
method to aggregate values at different levels. At a high level, we group date entries by some
interval (yearly, monthly, weekly) and then aggregate the values at that interval.

For example, to find the maximum snowfall by month, we can use this code:

>>> (snow
.resample('M")
.max ()
1980-01-31 20.0
1980-02-29 25.0
1980-03-31 16.0
1980-04-30 10.0
1980-05-31 9.0
2019-05-31 5.1
2019-06-30 0.0
2019-07-31 0.0
2019-08-31 0.0
2019-09-30 0.0
Freq: M, Name: SNOW, Length: 477, dtype:

float64

The 'M' string in the . resample call is what pandas calls an offset alias. This is a string that specifies
a grouping frequency. Using M means group all values by the end of the month. If you look at the

111

13. Dates in the Index

The .rolling Method

ata

0 2.00 ' F 0 nan

1.00 (data 1 nan

3.00 .rolling(3) 2 2.00

5.00 .mean()) 3 3.00
4 nan 4 nan
5) nan
6 6 nan
7 7 3.67
8 . 8 5.00
9 10.00 9 8.00

Figure 13.1: The .rolling method slides a window along the data, allowing you to call an aggregate function.

index for the result, you will see that each date is the end of the month. If we want to aggregate at
the end of every two months, we can use '2M' as the offset alias:

>>> (snow
.resample('2M")
. .max ()

e)
1980-01-31 20.

0
1980-03-31 25.0
1980-05-31 10.0
1980-07-31 1.0
1980-09-30 6.0

2019-01-31 19.0
2019-03-31 20.7
2019-05-31 18.0
2019-07-31 0.0
2019-09-30 0.0
Freq: 2M, Name: SNOW, Length: 239, dtype: float64

If we want to aggregate the maximum value for each ski season, which normally ends in May,
we could use the following code. This offset alias, 'A-MAY', indicates that we want an annual
grouping ('A"), but ending in May of each year:
>>> (snow
.resample ('A-MAY ")

. .max ()

cee)
1980-05-31 25.0
1981-056-31 26.0

112

13.7. Resampling

Alternative . rolling using the .shift Method

data

0 2.00 0 nan
1 1.00 (data 1 nan
2 3.00 ,add(2 2.00
3 5.00 .add 3 3.00
4 nan .div 4 nan
5 200,) 5 nan
6 1.00 6 nan
7 8.00 7 3.67
8 6.00 8 5.00
9 10.00 9 8.00

0 nan 0 nan

1 12.00 1 nan

2 |1.00 2 |2.00

3 [3.00 3 [1.00

4 |5.00 4 [3.00

5 nan 5 [5.00

6 |2.00 6 nan

7 [1.00 7 [2.00

8 [8.00 8 [1.00

9 16.00 9 |8.00

Figure 13.2: The .rolling method slide is similar to shifting the data for N-1 window size and then applying
an aggregation.

113

13. Dates in the Index

1982-05-31 34.0
1983-05-31 38.
1984-05-31 25.0

(<=}

2016-05-31 15.

0
2017-05-31 26.0
2018-05-31 21.8
2019-05-31 20.7
2020-05-31 0.0
Freq: A-MAY, Name: SNOW, Length: 41, dtype: floaté64
Below is a table of the offset aliases.
Offset Alias Date Offset Description
None DateOffset Default 1 day
'B' BDay Business day (weekday)
'C' CDay Custom business day
"W' Week Week (Can add -MON to end on Monday)
'WOM' WeekOfMonth Nth day of Mth week of month
'LWOM' LastWeekOfMonth Nth day of last week of month
'M' MonthEnd Month end
'MS' MonthBegin Month start
'BM' BMonthEnd Business month end
'BMS' BMonthBegin Business month start
'CBM' CBMonthEnd Custom business month end
'CBMS' CBMonthBegin Custom business month start
'SM' SemiMonthEnd Semi-month end (15th and month end)
'SMS' SemiMonthBegin Semi-month start (15th and month start)
'Q" QuarterEnd Quarter end (Can specify -JAN to end quarter in January)
'QS" QuarterBegin Quarter start
'BQ' BQuarterEnd Business quarter end
'BQS' BQuarterBegin Business quarter start
'REQ' FY5253Quarter Retail quarter end (52-53 week)
‘A" YearEnd Calendar year end (Can specify -MAY to end year in May)
'AS' / 'BYS' YearBegin Calendar year start
'BA" BYearEnd Business year end
'BAS' BYearBegin Business year start
'RE' FY5253 Retail year end (52-53 week)
'BH' BusinessHour Business hour
'CBH' CustomBusinessHour Custom business hour
‘D' Day Day
'"H' Hour Hour
'T'" / 'min' Minute Minute
'S'" Second Second
'L*/ 'ms' Milli Millisecond
'U' / 'us' Micro Microsecond
'N' Nano Nanosecond

Figure 13.3: Offset aliases and date offset classes for Grouper and .resample

114

13.8. Gathering Aggregate Values (But Keeping Index)

The result of calling . resample is a DateTimeIndexResampler object. It can perform many operations
in addition to taking the maximum value (as shown in the examples). See the table in the next
section.

13.8 Gathering Aggregate Values (But Keeping Index)

Below, instead of performing an aggregation with .resample, we leverage the .transform method,
which works on aggregation groups but returns a series with the original index. This makes it easy
to do things like calculate the percentage of quarterly snowfall the fell in a day:

>>> (snow
.div(snow
.resample('Q")
.transform('sum'))
.mul(100)
.fillna(0)
el)
1980-01-01 0.527009
1980-01-062 0.790514
1980-01-03 0.263505
1980-01-04 0.000000
1980-01-05 0.000000
2019-09-03 0.000000
2019-09-04 0.000000
2019-09-05 0.000000
2019-09-06 0.000000

2019-09-07 0.000000
Name: SNOW, Length: 14160, dtype: floaté64

To compute the percentage of a season’s snowfall that fell during each month, we could do the
following;:

>>> season2017 = snow.loc['2016-10"':"'2017-05"]
>>> (season2017
.resample('M")
.sum()
.div(season2017

.sum())
. .mul(100)
el)
2016-10-31 2.153969
2016-11-30 9.772637
2016-12-31 15.715995
2017-01-31 25.468688
2017-02-28 21.041085

2017-03-31 9.274033
2017-04-306 14.738732
2017-05-31 1.834862

Freq: M, Name: SNOW, dtype: floaté64

Here is a table of the operations you can use on a resample object.

Method Description

115

13. Dates in the Index

116

.agg(func, *args, **kwargs)

.aggregate(func, *args, **kwargs)
.apply(func, *args, **kwargs)
.asfreq(fill_value=None)
.backfill(1limit=None)
.bfill(limit=None)

.count()

FFi11(1imit=None)
.fillna(method, Llimit=None)

first()
.get_group(name, obj=None)
.interpolate(method="'1inear', axis=0,

limit=None, 1limit _direction='forward',
limit_area=None, downcast=None,
**kwargs,)

.last()
.max()

.mean()
.median()

.min()
.nearest(1imit=None)

.ngroups
.nunique()

.ohlc()

.pad(Limit=None)

.pipe(func, *args, **kwargs)
.plot()

.prod()

.quantile(g=0.5)

.sem()

.size()

.std()

.sum()
.transform(function, *args, **kwargs)

Apply a function (to the group), string function
name, list of functions, or dictionary (mapping
column names to previous function/string/list).
Returns a series if called with a single function,
otherwise return a dateframe for multiple
functions.

Same as .agg

Same as .agg

Return values at frequency (like .reindex)

Backfill the missing values.

Same as .backfill

Count of non-missing items in group.

Forward fill the missing values.

Method ('ffill', 'bfill', or 'nearest') to use for
filling in missing data for upsampling.

Return a series with the first value of each group.

Return the series for grouping frequency of name.

Return a series with interpolated values.

Return a series with the final value from each group.

Return a series with maximum value from each
group.

Return a series with mean value from each group.

Return a series with median value from each group.

Return a series with minimum value from each
group.

Fill the missing values with nearest.

Property with number of groups in aggregation.

Return a series with the number of unique values
from each group.

Return a dataframe with columns for open, high,
low, close.

Same as .ffill.

Apply function to resampler object.

Plot the groups.

Return a series with the product of each group.

Return a series with the quantile. If q is a list, return a
multi-index series.

Return a series with the standard error of mean of
each group.

Return a series with the size of each group (number
of rows including missing values).

Return a series with the standard deviation of each
group.

Return a series with the sum of each group.

Return a series with the same index as the original
(not grouped series). Function takes a group and
returns a group with the same index.

13.9. Groupby Operations

.var() Return a series with the variance of each group.
Table 13.2: Resampler Methods on a Series

13.9 Groupby Operations

There is also a .groupby method that acts as a generic sort of .resample, and I use this more on
dataframes than series. But here is an example of creating a function that will determine ski
season by looking at the index with date information. It considers a season to be from October
to September:
>>> def season(idx):

year = idx.year

month = idx.month

return year.where((month < 10), year+1)

We can now use this function with the .groupby method to aggregate all values for a season.
Here we calculate total snowfall for each season:

>>> (snow
.groupby (season)
.sum()

o)

1980 457.5

1981 503.0

1982 842.5

1983 807.5

1984 816.0

2015 284.3

2016 354.6

2017 524.0

2018 308.8

2019 504.5

Name: SNOW, Length: 40, dtype: float64

Note

We could also do the above with .resample using an anchored offset alias. The index would be
a date instead of an integer:

>>> (snow
.resample('A-SEP")
.sum()
eel)
1980-09-30 457.5
1981-09-30 503.0
1982-09-30 842.5
1983-09-30 807.5
1984-09-30 816.0
2015-09-30 284.3
2016-09-30 354.6
2017-09-30 524.0
2018-09-30 308.8
2019-09-30 504.5

Freq: A-SEP, Name: SNOW, Length: 40, dtype: float64

117

13. Dates in the Index

The .resample Method

data
1990/01/01 5 00 The offset alias 'M'
1990/01/10 270 aggregates at the monthly
1990/01/24 320 level. The .transform
1990/02/01 0.00 method puts the results
1990/02/10 110 into the orignal index.
1990/02/24 8.00
(data (data
.resample('M"') .resample('M")
.sum() .transform('sum')
)
1990/01/31 - 1990/01/01 10.90
1990/02/28 1990/01/10 10.90
1990/01/24 10.90
1990/02/01 9.10
1990/02/10 9.10
1990/02/24 9.10

Figure 13.4: If you have dates in the index, you can use the . resample method to aggregate at date frequencies.
The .transform method will take the resulting aggregates and place them back in the cell that contributed to
the value (with the original index).

118

13.10. Cumulative Operations

We will show more grouping operations like this when we dive into dataframes. Mastering these
operations takes some time, but it has huge payoffs as it makes many calculations that would
require creating a lot of declarative code easy.

13.10 Cumulative Operations

There are also a handful of cumulative methods that work well with sequence data. These are
.cummin, .cummax, .cumprod, and .cumsum. They return the cumulative minimum, maximum, product,
and sum respectively. To calculate the snowfall in a season, we can combine .cumsum with slicing:

>>> (snow
.loc['2016-10":'2017-09"']
. .cumsum ()

el)

2016-10-01 0.0

2016-10-02 0.0

2016-10-03 4.9

2016-10-04 4.9

2016-10-05 5.5

2017-09-26 524,
2017-09-27 524,
2017-09-28 524,
2017-09-29 524,
2017-09-30 524,
Name: SNOW, Length: 364, dtype: floaté64

[<=JN <> B < B «» I «»)

Alternatively, it we wanted to do this calculation for every year, we can combine . resample with
.transformand 'cumsum':
>>> (snow
.resample('A-SEP")
.transform('cumsum')

)

1980-01-01 2.0
1980-01-02 5.0
1980-01-03 6.0
1980-01-04 6.0
1980-01-05 6.0

2019-09-03 504.
2019-09-04 504.
2019-09-05 504.
2019-09-06 504.
2019-09-07 504.
Name: SNOW, Length: 14160, dtype: floaté64

o1 o1 o1 o1 O1

Method Description

pd.to_datetime(arg, errors='raise’', Convert arg to date index, series, or timestamp for
dayfirst=False, yearfirst=False, list, series, or scalar. Set errors to 'coerce' to have
utc=None, format=None, exact=True, invalid be NaT, 'ignore' to leave. Specify strftime
unit="'ns', infer_datetime_format=False, format with format or set infer_datetime format to
origin="unix', cache=True) True if only one format type.

119

13. Dates in the Index

.isna() Return boolean array (series) indicating where values
are missing.

.fillna(value=None, method=None, Return series with missing values set to value (scalar,

limit=None, downcast=None) dict, series). Use method to fill additional holes

('bfill' or 'ffill') only limit times. Provide
downcast="infer' to convert float to int if possible.

.loc If index is datetime, can use partial string indexing.

120

FFfi11(limit=None)
.bfill(1limit=None)
.interpolate(method="'1linear', axis=0,

limit=None, inplace=False,
limit_direction="'forward',
limit_area=None, downcast=None,
**kwargs,)

.where(cond, other=nan, level=None,

errors='raise', try cast=False)

.dropna()
.shift(periods=1, freg=None,

fill_value=None)

.rolling(window, min_periods=None,

center=False, win_type=None,
closed="right")

.resample(rule, closed='left',

label="'1left', convention='start',
kind=None, level=None,
origin="'start_day', offset=None)

.transform(func)

.groupby (by=None, level=None, sort=True,

group_keys=True, observed=False,
dropna=True)

.cummax (skipna=True)
.cummin(skipna=True)
.cumprod(skipna=True)

'2010" to select all of 2010. '2010-10" to select Oct
2010. Stop index includes that stopping period.
Indexing with Timestamp and datetime objects is not
partial.

Forward fill the missing values.

Forward fill the missing values.

Return a series with interpolated values.

Return a series with values replaced with other
where cond is False. cond can be boolean array or
function (series passed in, return boolean array).
other can be scalar, series, or function (series
passed in, return scalar or series).

Return a series with missing values removed.

Return a series with data shifted forward by periods
(can be negative). If time series and freq is offset
alias, index values are shifted to offset alias. Fill in
empty values with fill_value.

Return a Window or Rolling class to aggregate. window is
number windows, offset alias (for time series), or
BaseIndexer. Set center=True to label at center of
window. To use non-evenly weighted window, set
win_type to string with Scipy window type.

Return Resampler object to aggregate on. Use rule to
specify DateOffset, TimeDelta, or offset alias string.

Return a series with same index but with
transformed values. Best when used on a .groupby
or .resample result. func may be an aggregation
function or string when called on groupby or
resample.

Return a groupby object to aggregate on. by may be a
function (pass the index, return label), mapping
(dict or series that maps index to label), or a
sequence of labels. Use observed=True to limit
combinatoric explosion with categorical series.

Return cumulative maximum of series

Return cumulative minimum of series

Return cumulative product of series

13.11. Summary

.cumsum(skipna=True) Return cumulative sum of series

13.11

Table 13.3: Date Manipulation Methods

Summary

In this chapter, we explored many options for manipulating date information in pandas.
Depending on whether you are manipulating dates in a series or dates in an index (time series),
there are different options.

13.12 Exercises

With a dataset of your choice:

1.

S A A o R

Convert a column with date information to a date.

Put the date information into the index for a numeric column.

Calculate the average value of the column for each month.

Calculate the average value of the column for every 2 months.

Calculate the percentage of the column out of the total for each month.
Calculate the average value of the column for a rolling window of size 7.
Using .loc pull out the first 3 months of a year.

Using . loc pull out the last 4 months of a year.

121

Chapter 14

Plotting with a Series

Inspecting statistical summaries and tables can reveal much about your data. Another technique
to understand the data at a more intuitive level is to plot it. I am a huge fan of plotting, as it has
led to insights I do not believe I would have come across otherwise. I have used visualizations to
debug and find errors in code. Mastering visualization will be a huge benefit to you.

In this chapter, we will explore how to create plots from series with pandas.

14.1 Plotting in Jupyter

Pandas has native integration with Matplotlib. To leverage it in Jupyter, make sure you include the
following cell magic to tell Jupyter to display the plots in the browser:

fmatplotlib inline

14.2 The .plot Attribute

A series object has a .plot attribute. This attribute is interesting as you can call it directly to create
plots, or access sub-attributes of it. Let’s load the snow data and create some plots:

>>> url = 'https://github.com/mattharrison/datasets/raw/master/"\
'data/alta-noaa-1980-2019.csv'

>>> alta_df = pd.read _csv(url)

>>> dates = pd.to datetime(alta_df.DATE)

>>> snow = (alta_df

. SNOW

.rename (dates)

)

>>> snow
1980-01-01 2.0
1980-01-02 3.0
1980-01-03 1.0
1980-01-04 0.0
1980-01-05 0.0
2019-09-03 0.0
2019-09-04 0.0
2019-09-05 0.0
2019-09-06 0.0
2019-09-07 0.0
Name: SNOW, Length: 14160, dtype: floaté64

123

14. Plotting with a Series

12000

10000

8000

6000

Frequency

4000

2000

_
5 10 15 20 25 30 35

Figure 14.1: Basic histogram.

Snowfall Histogram (in)

500
400
300
200
.-- —
0 5 10 15 2

0 25 30 35

Frequency

Figure 14.2: Histogram with zero values filtered out and 20 bins.

The following plot attributes are available for plotting a series: bar, barh, box, hist, kde, line, and
pie. The next sections will explore them.

14.3 Histograms

If you have continuous numeric data, plotting a histogram can give you insight into how the data
is distributed:
>>> snow.plot.hist()

The snow data is heavily skewed. We might want to drop the zero entries and try again. We
will also change the number of bins:
>>> snow[snow>8].plot.hist(bins=20, title='Snowfall Histogram (in)"')

124

14.4. Box Plot

(o}e}

35
30
25
20
15

10

SNOW

Figure 14.3: Basic boxplot.

35
30
25

20

IC(IDZI)OO (e)e}

15

10

0 J

SNOW

Figure 14.4: A better basic boxplot with snowfall levels for each January.

14.4 Box Plot

You can also create a boxplot to view the distribution of the data. In this example, it does not look
much like a box. This is because most of the time, it doesn’t snow, so the plot shows that any time
it snows is considered an outlier:

>>> snow.plot.box()

It looks more boxy if we limit it to snow amounts during January (ignoring zero):

>>> (snow
[lambda s:(s.index.month == 1) & (s>0)]
.plot.box ()

125

14. Plotting with a Series

0.10

0.08

0.06

Density

0.04

0.02

0.00
-20 -10 0 10 20 30 40 50

Figure 14.5: A basic kernel density estimate plot.

30

20

10

\Q%Q \Q?’6 \090 \Qg% 1090 1006 q,Q\Q qp\% rLQq’Q

Figure 14.6: Basic line plot.

14.5 Kernel Density Estimation Plot

Another option to view the kernel density estimation (KDE). This is essentially a smoothed
histogram:

>>> (snow
[l1ambda s:(s.index.month == 1) & (s>0)]
.plot.kde()

14.6 Line Plots

For numeric time series values we can plot a line plot:

>>> snow.plot.line()

126

14.7. Line Plots with Multiple Aggregations

20

15

10

IM
. LTI

AN A o % P ok P Qo ot P)
SOSEPN SAIPN \ SR A SRIPN \ NIPS \ SRPS\NPS \SP\ P \S SEIP\

Figure 14.7: Last few values of basic line plot.

A line plot in pandas plots the values in the series in the y-axis and the index in the x-axis. This
plot is a little crowded as we are packing daily data for 40 years into the x-axis. We can slice off the
last few years to zoom in or resample to view trends. Here we pull off the last 300 values:
>>> (snow
.iloc[-300:]

- .plot.line()
)

Note that by writing the code as above, I can easily comment out the line .plot.1line() and
inspect the series that will be plotted.

Here I'm going to aggregate at the monthly level and look at the mean snowfall using . resample
with the 'M' offset alias and the .mean aggregation method:
>>> (snow

.resample('M")

.mean ()

.plot.line()
)

14.7 Line Plots with Multiple Aggregations

Plotting can be even more powerful with dataframes. To give you an idea, we will use the .quantile
method to pull out the 50%, 90%, and 99% values. This returns a series with multiindex (we will
talk about those more later). If we chain the .unstack method, we can pull out the inner index
(the one with the quantile names) into columns and create a dataframe that has a column for each
quantile. If we plot this dataframe, each column will be its own line:

>>> (snow

.resample('Q")

.quantile([.5, .9, .99])

.unstack ()

.iloc[-100:]

.plot.line()

127

14. Plotting with a Series

8
=

6

A J

1984 1989 1994 1999 2004 2009 2014 2019

Figure 14.8: Resampled line plot.

30 — 05
— 09
25

W — 0.99
20

w M

10

1999 2004 2009 2014 2019

Figure 14.9: Resampled line plot from dataframe.

14.8 Bar Plots

You can also create bar plots. These are useful for comparing values. In the previous section, we
looked at the percent of snow that fell during each month:

>>> season2017 = (snow.loc['2016-10"':"'2817-05"'])
>>> (season2017

.resample('M")

.sum()

.div(season2017.sum())

.mul(100)

. .rename (lambda idx: idx.month_name())
o)
October 2.153969
November 9.772637

128

14.8. Bar Plots

2017 Monthly Percent of Snowfall

25

20
15
| I

>
©
p=

(8]

o

October
November
December

January

February
March
April

Figure 14.10: Basic series bar plot.

December 15.715995

January 25.468688
February 21.041085
March 9.274033
April 14.738732
May 1.834862

Name: SNOW, dtype: float64

If you do a bar plot on a series it will plot the index along the x-axis and draw a bar for each
value. We will add a call to .plot.bar and set the title:

>>> (season2017

.resample('M")

.sum()

.div(season2017.sum())

.mul(100)

.rename (lambda idx: idx.month _name())

.. .plot.bar(title='2017 Monthly Percent of Snowfall')
.)

You can create a horizontal bar plot with the .barh method:

>>> (season2017

.resample('M")

.sum()

.div(season2017.sum())

.mul(100)

.rename (lambda idx: idx.month_name())

.. .plot.barh(title='2017 Monthly Percent of Snowfall')

.)

I like to use bar plots with categorical data. Let’s pull in the makes of the auto data:

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/'\
'vehicles.csv.zip'

129

14. Plotting with a Series

2017 Monthly Percent of Snowfall

may [

April -

March I
February [
January |
December [
November [N

[

October

Figure 14.11: Basic series horizontal bar plot.

>>> df = pd.read _csv(url)
>>> make = df.make

The .value_counts method is my go-to tool for understanding the values in categorical data. It
puts the categories in the index and counts as the values of the series:

>>> make.value_counts()

Chevrolet 4003
Ford 3371
Dodge 2583
GMC 2494
Toyota 2071
E. P. Dutton, Inc. 1
Mahindra 1
London Taxi 1
Panos 1

1

Lambda Control Systenms
Name: make, Length: 136, dtype: inté64

It is also easy to visualize this by tacking on .plot.bar. This will plot the categories in the x-axis:

>>> (make
.value_counts()
.. .plot.bar()
)
However, you can see that the plot is very crowded. As a rough rule of thumb, I don’t like to
create bar plots with more than 30 bars. Let’s use some pandas code to limit this to 10 makes and
plot it horizontally:

>>> top10 = make.value counts().index[:10]
>>> (make

.where(make.isin(top10), 'Other')
.value_counts()

.plot.barh()

130

14.8. Bar Plots

4000

3500

3000

2500

2000

1500

1000

500

Mitsubishi
Volkswagen
Nissan
Mercedes-Benz
BMW
Toyota
GMC

Dodge

Ford
Chevrolet
Other

s :
¢ G Uy > .6 G i e
S b= ¥ oS S 5] -
73 F o28Es s SGmos
S X N O = N
5 SHTCE SsEae priNEale
3 85 853 o= 28 TOZ S
o EE o /0 ©—Q 3EL|J %{
o = s pd nIO o = %E N
O £ © =5 5: c o
= - = oo c FRE ¢
© s >0 © > S ©
= Q coc < Cs—g_
(7] @ on+ ()
£ a =G E
< o
=
c
i

Figure 14.12: Crowded bar plot.

LambdaGentrah i

ort Foreign A

Sl

o

2500 5000 7500 10000 12500 15000 17500

Figure 14.13: Grouping long-tail members together for legible bar plot.

20000

131

14. Plotting with a Series

2017 Monthly Percent of Snowfall

December

January
November

e May
April
February

March

SNOW

Figure 14.14: Basic series pie plot.

14.9 Pie Plots

If you are the type that prefers pie plots, you can create those as well:

>>> (season2017

.resample('M")

.sum()

.div(season2017.sum())

.mul(100)

.rename (lambda idx: idx.month_name())
.plot.pie(title="'2017 Monthly Percent of Snowfall')

132

14.11. Summary

14.10 Styling

You may notice that my plots don’t look like the default plots of Matplotlib. I'm using the Seaborn
library to set the font and color palette before plotting. To do similar, you could use code like this:

import matplotlib

import seaborn as sns

color palette = ["#440154", "#482677", "#404788", "#33638d", "#287d8e",
"#1£968b", '#29af7f', '#55c667', '#73d055', '#b8de29', '#fde725']

fp = matplotlib.font_manager.FontProperties(
fname="'/Fonts/roboto/Roboto-Condensed.ttf"')

with sns.plotting context(rc=dict(font="'Roboto', palette=color _palette)):
fig, ax = plt.subplots(dpi=600, figsize=(10,4))
snow.plot.hist()
fig.savefig('snowhist.png', dpi=600, bbox_inches='tight")

Method Description

s.plot(ax=None, style=None, logx=False, Common plot parameters. Use ax to use existing
logy=False, xticks=None, yticks=None, Matplotlib axes, style for color and marker style
x1im=None, ylim=None, xlabel=None, (see matplotlib.marker), _ticks to specify tick
ylabel=None, rot=None, fontsize=None, locations, _lim to specify tick limits, _label to
colormap=None, table=False, **kwargs) specify x/y label (default to index/column name),

rot to rotate labels, fontsize for tick label size,
colormap for coloring, position, table to create table
with data. Additional arguments are passed to
plt.plot

s.plot.bar(position=.5, color=None) Create a bar plot. Use position to specify label
alignment (0-left, 1-right). Use color (string, list) to
specify line color.

s.plot.barh(x=None, y=None, color=None) Create a horizontal bar plot. Use position to specify
label alignment (0-left, 1-right). Use color (string,
list) to specify line color.

s.plot.hist(bins=10) Create a histogram. Use bins to change the number
of bins.

s.plot.box() Create a boxplot.

s.plot.kde(bw _method="'scott', ind=None) Create a Kernel Density Estimate plot. Use bw_method

to calculate estimator bandwidth (see
scipy.stats.gaussian_kde). Use ind to specify
evaluation points for PDF estimation (NumPy
array of points, or integer with equally spaced

points).
s.plot.line(color=None) Create a line plot. Use color to specify line color.
s.plot.pie() Create a pie plot.

Table 14.1: Series Plotting Methods

14.11 Summary

In this chapter, we explored basic plotting functionality with series objects. We showed a little bit
of the functionality that you get when plotting with a data frame. We will explore more of this later.
Also, note that because the plotting functionality is built on top of Matplotlib, you can customize
the plot using Matplotlib.

133

14. Plotting with a Series

14.12 Exercises

With a dataset of your choice:

1.

AN o

134

Create a histogram from a numeric column. Change the bin size.
Create a boxplot from a numeric column.

Create a Kernel Density Estimate plot from a numeric column.
Create a line from a numeric column.

Create a bar plot from a frequency count of a categorical column.

Create a pie plot from a frequency count of a categorical column.

Chapter 15

Categorical Manipulation

So far, we have dealt with numeric and date data. Another common form of data is textual data,
and a subset of textual data is categorical data. Categorical data is textual data that has repetitions.
In this section, we will explore handling categorical data with pandas.

15.1 Categorical Data

Categories are labels that describe data. Generally, there are repeated values, and if they have an
intrinsic order, they are referred to as ordinal values. One example is shirt sizes: small, medium,
and large. Underordered values such as colors are called nominal values. In addition, you can
convert numerical data to categories by binning them.

We will start by looking at the categorical values found in the fuel economy data set. The make
column has categorical information:
>>> import pandas as pd
>>> url = 'https://github.com/mattharrison/datasets/raw/master/"' \
... 'data/vehicles.csv.zip'
>>> df = pd.read csv(url)
>>> make = df.make

>>> make

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: object

15.2 Frequency Counts

I like to use the .value_counts method to determine the cardinality of the values. The frequency of
values will tell you if a column is categorical. If every value was unique or free form text, it is not
categorical:

135

15. Categorical Manipulation

>>> make.value counts()

Chevrolet 4003
Ford 3371
Dodge 2583
GMC 2494
Toyota 2071
London Taxi 1
General Motors 1
E. P. Dutton, Inc. 1
RUF Automobile 1
JBA Motorcars, Inc. 1
Name: make, Length: 136, dtype: inté64

We can also inspect the size and the number of unique items to infer the cardinality:

>>> make.shape, make.nunique()
((41144,), 136)

15.3 Benefits of Categories

The first benefit of categorical values is that they use less memory:

>>> cat_make = make.astype('category')

>>> make.memory usage (deep=True)
2606395

>>> cat_make.memory_usage(deep=True)
95888

Another benefit is that categorical computations can be faster for many operations. For
example, we still have access to the .str attribute on categoricals. Let’'s compare creating uppercase
results from a string type against a categorical type:
>>> hhtimeit
cat_make.str.upper()

1.41 ms + 37.4 ps per loop (mean * std. dev. of 7 runs, 1000 loops each)

>>> Jtimeit
make.str.upper()
11.5 ms + 45.7 ps per loop (mean + std. dev. of 7 runs, 100 loops each)

In this case, the same operation is ten times faster with the categorical data. Note that the string
operations do not return categorical series.

Also, remember that the binning functions that we showed previously, pd.cut and pd.qcut,
create categorical results.

15.4 Conversion to Ordinal Categories

If we wanted to make an ordinal categorical (say alphabetic order) from the makes, we could do
the following:
>>> make_type = pd.CategoricalDtype(

categories=sorted(make.unique()), ordered=True)

>>> ordered make = make.astype(make type)
>>> ordered_make

136

15.5. The .cat Accessor

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: category
Categories (136, object): [AM General < ASC Incorporated < Acura
< Alfa Romeo ... Volvo < Wallace Environmental < Yugo < smart]

A benefit of ordinal categoricals is that you can specify a lexical order to the items. If the items
have an order, you can use reducing operations like maximum and minimum (where you can
specify an order rather than using alphabetic order):

>>> ordered_make.max ()
"smart '

>>> cat_make.max ()
Traceback (most recent call last):

TypeError: Categorical is not ordered for operation max
you can use .as_ordered() to change the Categorical to an ordered one

You can also sort the series according to the order:

>>> ordered make.sort _values()
20288 AM General
20289 AM General
369 AM General
358 AM General
19314 AM General

31289 smart

31290 smart
29605 smart
22974 smart
26882 smart

Name: make, Length: 41144, dtype: category
Categories (136, object): [AM General < ASC Incorporated < Acura <
Alfa Romeo ... Volvo < Wallace Environmental < Yugo < smart]

15.5 The .cat Accessor

In addition, there are a few methods attached to the .cat attribute of categorical series. If you need
to rename the categories, you can use the .rename_categories method. You need to pass in a list
with the same length as the current categories or a dictionary mapping old values to new values.
Here we will lowercase the categories using both methods:

>>> cat _make.cat.rename categories(
[c.lower() for c in cat _make.cat.categories])

0 alfa romeo
1 ferrari
2 dodge

137

15. Categorical Manipulation

3 dodge
4 subaru
41139 subaru
41140 subaru
41141 subaru
41142 subaru
41143 subaru

Name: make, Length: 41144, dtype: category
Categories (136, object): [am general, asc incorporated, acura, alfa
romeo, ..., volvo, wallace environmental, yugo, smart]

>>> ordered make.cat.rename categories(
{c:c.lower() for c in ordered make.cat.categories})

0 alfa romeo
1 ferrari
2 dodge
3 dodge
4 subaru
41139 subaru
41140 subaru
41141 subaru
41142 subaru
41143 subaru

Name: make, Length: 41144, dtype: category
Categories (136, object): [am general < asc incorporated < acura
< alfa romeo ... volvo < wallace environmental < yugo < smart]

The .cat attribute also allows you to add or remove categories and change the order of nominal
categories.

Here we change the ordering. Previously smart was the maximum value because it was
lowercased. Let’s sort them ignoring case:

>>> ordered_make.cat.reorder_categories(
sorted(cat make.cat.categories, key=str.lower))

0 Alfa Romeo
1 Ferrari
2 Dodge
3 Dodge
4 Subaru
41139 Subaru
41140 Subaru
41141 Subaru
41142 Subaru
41143 Subaru

Name: make, Length: 41144, dtype: category
Categories (136, object): ['Acura' < 'Alfa Romeo'
'"Volvo' < 'VPG' < 'Wallace Environmental' < 'Yugo']

15.6 Category Gotchas

Here are a few oddities to be aware of with categorical data. Applying the .value_counts method
or .groupby to categorical data uses all of the categories even if there were no values for them. In

138

15.6. Category Gotchas

this example, we will look at the first hundred entries and count the frequency of entries. Note that
this returns more than one hundred results because it includes every category!:

>>> ordered make.iloc[:100].value_counts()
Dodge 17
Oldsmobile 8

Ford
Buick
Mazda

[&2 I N ie o)

Panos 0
Panoz Auto-Development 0
Panther Car Company Limited 0
Peugeot 0
AM General 0

j

Name: make, Length: 136, dtype: int64

Similarly, using the .groupby method will use all of the categories (this is even a bigger issue
when we group by two categories with dataframes and get a combinatoric explosion):

>>> (cat_make

.iloc[:100]

.groupby(cat make.iloc[:100])

first()
cee)
make
AM General NaN
ASC Incorporated NaN
Acura NaN
Alfa Romeo Alfa Romeo
American Motors Corporation NaN
Volkswagen Volkswagen
Volvo Volvo
Wallace Environmental NaN
Yugo NaN
smart NaN

Name: make, Length: 136, dtype: category
Categories (136, object): ['AM General', 'ASC Incorporated',
'Wallace Environmental', 'Yugo', 'smart']

Compare this with just the result from the string series:

>>> (make
.iloc[:100]
.groupby (make.iloc[:100])
first()
el)
make
Alfa Romeo Alfa Romeo
Audi Audi
BMW BMW
Buick Buick

CX Automotive CX Automotive

Rolls-Royce Rolls-Royce

Subaru Subaru
Toyota Toyota
Volkswagen Volkswagen

139

15. Categorical Manipulation

Volvo Volvo
Name: make, Length: 25, dtype: object

There is an optional parameter, observed, for .groupby to tell it to only include results for which
there are values:

>>> (cat_make

.iloc[:100]
.groupby(cat_make.iloc[:100], observed=True)
first()
e)
make
Alfa Romeo Alfa Romeo
Ferrari Ferrari
Dodge Dodge
Subaru Subaru
Toyota Toyota
Mazda Mazda
Oldsmobile Oldsmobile
Plymouth Plymouth
Pontiac Pontiac

Rolls-Royce Rolls-Royce
Name: make, Length: 25, dtype: object

Also, note that pulling out a single value with . iloc will return a scalar, but if you pass in a list,
it will return a categorical even if it is a single value:

>>> ordered_make.iloc[0]
"Alfa Romeo'

>>> ordered _make.iloc[[0]]
0 Alfa Romeo
Name: make, dtype: category
Categories (136, object): [AM General < ASC Incorporated < Acura
< Alfa Romeo ... Volvo < Wallace Environmental < Yugo < smart]

15.7 Generalization

In the manipulation methods chapter, we discussed generalizing categories when exploring the
.where method. It is worth repeating similar code here since I find that I often want to limit the
number of categorical values:

>>> def generalize topn(ser, n=5, other='0ther'):
topn = ser.value_counts().index[:n]
if isinstance(ser.dtype, pd.CategoricalDtype):
ser = ser.cat.set categories(
topn.set categories(list(topn)+[other]))
return ser.where(ser.isin(topn), other)

>>> cat_make.pipe(generalize_topn, n=20, other='NA")

0 NA
1 NA
2 Dodge
3 Dodge
4 Subaru

41139 Subaru

140

15.7. Generalization

41140 Subaru

41141 Subaru

41142 Subaru

41143 Subaru

Name: make, Length: 41144, dtype: category

Categories (21, object): ['Chevrolet', 'Ford',
'Volvo', 'Hyundai', 'Chrysler', 'NA']

'Dodge', 'GMC', ...,

Another generalization I like to do is hierarchical. Suppose I want country from make, but I
only want US and German categories and I want to label everything else as “Other”:

>>> def generalize mapping(ser, mapping, default):

seen = None
res = ser.astype(str)
for old, new in mapping.items():
mask = ser.str.contains(old)
if seen is None:
seen = mask
else:
seen |= mask
res = res.where(~mask, new)
res = res.where(seen, default)
return res.astype('category')

>>> generalize mapping(cat_make, {'Ford': 'US', 'Tesla': 'US',
'Chevrolet': 'US', 'Dodge': 'US',
'Oldsmobile': 'US', 'Plymouth': 'US',
.. "BMW': 'German'}, 'Other')
0 Other
1 Other
2 us
3 us
4 Other
41139 Other
41140 Other
41141 Other
41142 Other
41143 Other
Name: make, Length: 41144, dtype: category
Categories (3, object): ['German', 'Other', 'US']
Method Description
.astype(dtype) Return a series converted to categories. Set dtype to

pd.CategoricalDtype(categories,
ordered=False)

pd.cut(x, bins, right=True, labels=None,
retbins=False, precision=3,
include_lowest=False,
duplicates='raise', ordered=True)

'category' for unordered category, CategoricalDType
for ordered category.

Create categorical type. Set categories to a list of
categories.

Bin values from x (a series). If bins is an integer, use
equal-width bins. If bins is a list of numbers
(defining minimum and maximum positions) use
those for the edges. right defines whether the right
edge is open or closed. labels allows us to specify
bin names. Out of bounds values will be missing.

141

15. Categorical Manipulation

pd.qcut(x, g, labels=None, retbins=False, Bin values from x (a series) into q equal-sized bins (10
precision=3, duplicates='raise') for decile quantiles, 4 for quartile quantiles).
Alternatively, we can pass in a list of quantile
edges. Out of bounds values will be missing.

.cat.add_categories(new_categories) Return a series with the new categories added. If it is
ordinal, the new values are added at the end
(highest).

.cat.as_ordered() Convert categorical series to an ordered series. Use
.reorder_categories or CategoricalDtype to specify
the order.

.cat.categories Property with the index of categories.

.cat.codes Property with a series with category codes (index
into a category).

.cat.ordered Boolean property if series is ordered.

.cat.remove categories(removals) Return a series with the categories removed (replace
with NaN).

.cat.remove_unused_categories() Return a series with the categories removed that are
being used.

.cat.rename_categories(new_categories) Return a series with the categories replaced by a list

(with new values) or a dictionary (mapping old to
new values).
.cat.reorder_categories(new_categories) Return a series with the categories replaced by a list.
.cat.set_categories(new_categories, Return a series with the categories replaced by a list.
ordered=False, rename=False)
Table 15.1: Category Attributes and Methods

15.8 Summary

If you are dealing with text data, it is worth considering whether converting the text data to
categorical data makes sense. You can save a lot of memory and speed up many operations by
doing so. A categorical series has a .cat attribute that will allow you to manipulate the categories.

15.9 Exercises
With a dataset of your choice:

1. Convert a text column into a categorical column. How much memory did you save?

2. Convert a numeric column into a categorical column by binning it (pd.cut). How much
memory did you save?

3. Use the generalize_topn function to limit the amounts of categories in your column. How
much memory did you save?

142

Chapter 16

Dataframes

In pandas, the two-dimensional counterpart to the one-dimensional Series is the DataFrame. If we
want to understand this data structure, it helps to know how it is constructed. This chapter will
introduce the dataframe.

16.1 Database and Spreadsheet Analogues

If you think of a dataframe as row-oriented, the interface will feel wrong. Many tabular data
structures are row-oriented. Perhaps this is due to spreadsheets and CSV files dealt with on a
row by row basis. Perhaps it is due to the many OLTPY databases that are row-oriented out of the
box. A DataFrame, is often used for analytical purposes and is better understood when thought of
as column-oriented, where each column is a Series.

Note

In practice, many highly optimized analytical databases (those used for OLAP cubes) are also
column-oriented. Laying out the data in a columnar manner can improve performance and
require fewer resources. Columns of a single type can be compressed easily. Performing
analysis on a column requires loading only that column, whereas a row-oriented database
would require reading the complete database to access an entire column.

16.2 A Simple Python Version

Below is a simple attempt to create a tabular Python data structure that is column-oriented. It has
a 0-based integer index, but that is not required, the index could be string based. Each column is
similar to the Series-like structure developed previously:

>>> df = {
"index ':[0,1,2],
'cols': [

{ 'name':'growth',
'data':[.5, .7, 1.2] },

YOLTP (On-line Transaction Processing) characterizes databases that are meant for transactional data. Bank
accounts are an example where data integrity is imperative, yet multiple users might need concurrent access. In
contrast with OLAP (On-line Analytical Processing), which is optimized for complex querying and aggregation.
Typically, reporting systems use these types of databases, which might store data in a denormalized form to speed
up access.

143

16. Dataframes

{ '"name':'Name',
'data':['Paul', 'George', 'Ringo'] },
]
}

Rows are accessed via the index, and columns are accessible from the column name. Below are
simple functions for accessing rows and columns:

>>> def get row(df, idx):
. results = []
value _idx = df['index'].index(idx)
for col in df['cols']:
results.append(col['data'][value_ idx])
return results

>>> get _row(df, 1)
[0.7, 'George']

>>> def get col(df, name):
for col in df['cols']:
if col['name'] == name:
return col['data']

>>> get col(df, 'Name')
['Paul', 'George', 'Ringo']

16.3 Dataframes

Using the pandas DataFrame object, the previous data structure could be created like this:

>>> import pandas as pd
>>> df = pd.DataFrame ({
'growth':[.5, .7, 1.2],
"Name ':['Paul', 'George', 'Ringo'] })

>>> df

growth Name
0 0.5 Paul
1 0.7 George
2 1.2 Ringo

The leftmost values, 0, 1, and 2, are the index. There are two columns, growth and Name. This
data structure (like a series) has hundreds of attributes and methods. We will highlight many of
the main features below.

One of the ways we can access a row is by location-indexing off of the . 1loc attribute:
>>> df.iloc[2]
growth 1.2
Name Ringo
Name: 2, dtype: object

Columns are also accessible via multiple methods. One is indexing the column name directly
off of the object:

>>> df['Name ']

0 Paul
1 George
2 Ringo

144

16.3. Dataframes

Dataframe
Index Column Axis 1
pd.DataFrame
Axis 0 \\\\ “// \\\‘ 1/
| age teacher name |
0 15 Ashby Dave
1 16 Ashby Suzy
2 16 Jones Adam
3 15 Jones Liv

Figure 16.1: Figure showing column-oriented nature of Dataframe. (Note that a column can be pulled off as
a Series)

Name: Name, dtype: object

Note the type of column is a pandas Series instance. Any operation that can be done to a series
can be applied to a column:
>>> type(df['Name'])
<class 'pandas.core.series.Series'>

>>> df['Name'].str.lower ()

0 paul
1 george
2 ringo

Name: Name, dtype: object

Note

The DataFrame overrides _getattr _to allow access to columns as attributes. This tends to work
ok, but will fail if the column name conflicts with an existing method or attribute. It will also
fail if the column has a non-valid attribute name (such as a column name with a space):

>>> df.Name

¢ Paul
1 George
2 Ringo

Name: Name, dtype: object

You will find many who advise never to use attribute access to pull out a column, and they
prefer using the index lookup. While the index lookup will work even with columns that do
not have proper Python attribute names (alpha-numeric or underscore), I find that I often use
attribute access when using Jupyter! Why is that? Because tab completion works better when
using attribute access. (I also tend to clean up my column names to non-conflicting Python
attribute names.)

The above should provide clues as to why the Series was covered in such detail. When column
operations are required, a series method is often involved. Also, the index behavior across both
data structures is the same.

145

16. Dataframes

16.4 Construction
dataframes can be created from many types of input:

e columns (dicts of lists)

rows (list of dicts)

CSV files (pd.read _csv)

NumPy ndarrays

other: SQL, HDF5, arrow, etc

The previous creation of df illustrated making a dataframe from columns. Below is an example of
creating a dataframe from rows:

>>> pd.DataFrame ([
{'growth':.5, 'Name':'Paul'},
{'growth':.7, 'Name':'George'},
{'growth':1.2, 'Name':'Ringo'}])
Name growth

0 Paul 0.5
1 George 0.7
2 Ringo 1.2

Similarly, here is an example of loading this data from a CSV file (I will mock out a file with
StringI0):

>>> from io import StringIO

>>> csv_file = StringI0("""growth,Name
. .b,Paul
. .7,George
. 1.2,Ringo""")

>>> pd.read csv(csv_file)

growth Name
0 0.5 Paul
1 0.7 George
2 1.2 Ringo

The pd.read_csv function tries to be smart about its input. If you pass it a URL, it will download
the file. If the extension ends in .xz, .bz2, or .zip, it will decompress the file automatically (you can
provide a compression='bz2"' parameter to explicitly force decompression of a file that has a different
extension).

After parsing the CSV file, pandas makes a best-effort to give a type to each column. A "best-
effort” means it will convert numerics to int64 if the column is whole numbers and not missing
values. Other numeric columns are converted to float64 (if they have decimals or are missing
values). If there are non-numeric values, pandas will use the object type. Usually object means
that the column has string type data, though it might be mixed-typed column that has string data
and nan values stored as floats.

One parameter to the pd.read_csv function is dtypes. It accepts a dictionary mapping column
names to types. You can use the types listed below:

146

16.5. Dataframe Axis

Type Description
float64 Floating point. Can specify different sizes, ie: float16, float32 or float64.
int64 Integer number. Can put u in front for unsigned. Can specify size, ie: int8, int16, int32, or
int64. Does not support missing values.
Int64 Nullable integer number. Supports <NA> for integer columns. Can put U in front for
unsigned. Can specify size, ie: Int16, Int32, or Int64.
datetime64[ns] Datetime number
datetime64[ns, Datetime number with timezone
tz]
timedeltalns] A difference between datetimes
category Used to specity categorical columns
object Used for other columns such as strings, or Python objects
string Used for text data. Supports <NA> for missing values.

Figure 16.2: Data types in pandas

Tip
Having said this, my experience with the dtype parameter is that it is easier to convert many

types after they are loaded into a dataframe. I work on each column as a series and use the
.astype method or one of the to_* functions at that point.

A dataframe can be instantiated from a NumPy array as well. The column names will need to be
passed in as the colunns parameter to the constructor:

>>> import numpy as np
>>> np.random.seed(42)
>>> pd.DataFrame(np.random.randn(10,3),
. columns=['a', 'b', 'c'])
a b c
0.496714 -0.138264 0.647689
1.523030 -0.234153 -0.234137
1.579213 0.767435 -0.469474
0.542560 -0.463418 -0.465730
0.241962 -1.913280 -1.724918
.b62288 -1.012831 0.314247
-0.908024 -1.412304 1.465649
-0.225776 0.067528 -1.424748
-0.544383 0.110923 -1.150994
0.375698 -0.600639 -0.291694

W o0 OOl W O
|
(<)

16.5 Dataframe Axis

Unlike a series, which has one axis, there are two axes for a dataframe. They are commonly referred
to as axis 0 and 1, or the "index" (or 'rows') axis and the "columns" axis respectively:

>>> df.axes
[RangeIndex(start=0, stop=3, step=1),
Index (['growth', 'Name'], dtype='object')]

For example, we can sum a dataframe along the index or along the columns using the labels 0
and 1:

147

16. Dataframes

>>> df.sum(axis=0)

growth 2.4
Name PaulGeorgeRingo
dtype: object

>>> df.sum(axis=1)

0 0.5
1 0.7
2 1.2

dtype: floaté64

We can also spell out the axis. This is my preferred method because it is easier to read:

>>> df.sum(axis="index"')
growth 2.4
Name PaulGeorgeRingo
dtype: object

>>> df.sum(axis="'columns ")

0 0.5
1 0.7
2 1.2

dtype: floaté64

As many operations take an axis parameter, it is important to remember that 0 is the index and
1is the columns:

>>> df.axes[0]
RangeIndex(start=0, stop=3, step=1)

>>> df.axes[1]
Index (['growth', 'Name'], dtype='object')

Tip

Here is a clue to help remember which axis is 0 and which is 1. Think back to a Series. It, like
a DataFrame, has an index. Axis 0 is along the index. A mnemonic to aid in remembering is that
the 1 looks like a column (axis 1 is across columns):

>>> df = pd.DataFrame({'Scorel': [None, None],

... 'Score2': [85, 901]1})
>>> df

Scorel Score?
0 None 85
1 None 90

If we want to sum up each of the columns, then we sum down the index or row axis (axis=0):

>>> df.apply(np.sum, axis=0)
Scorel 0

Score?2 175

dtype: inté64

To sum along every row, we sum across the columns axis (axis=1):

>>> df.apply(np.sum, axis=1)
0 85

1 90

dtype: inté64

148

16.6. Summary

Dataframe Axis
mpg

city highway Axis 1/"columns”

0 19 p5| AcCrossrows 0 22.00

e 2 1 9 14/ mpg.mean(axis=1) 1 11.50
% = 2 23 33 2 28.00
c _g 3 10 12 (mpg 3 11.00
S5 © 4 17 23 .mean(axis="'columns')) 4 20.00
n § 41139 19 26 41139 22.50
<>E_< o 41140 20 28 41140 24.00
= 41141 18 24 41141 21.00
41142 18 24 41142 21.00

41143 16 21 41143 18.50

mpg.mean (axis=0)

mpg.mean(axis="index")

city 18.37
highway 24.50

Figure 16.3: Figure showing the relation between axis 0 and axis 1. Note that when an operation is applied
along axis 0, it is applied down the column. Likewise, operations along axis 1 operate across the values in
the row.

Code Description

pd.DataFrame(data=None, index=None, Create a dataframe from scalar, sequence, dict,
columns=None) ndarry or dataframe.

.axes Tuple of index and columns.

Table 16.1: Dataframe creation

16.6 Summary

In this chapter, we introduced a Python data structure that is similar to how the pandas dataframe
is implemented. It illustrated the index and the columnar nature of the dataframe. Then we looked
at the main components of the dataframe and how columns are really just series objects. We saw
various ways to construct dataframes. Finally, we looked at the two axes of the dataframe.

In future chapters, we will dig in more and see the dataframe in action.

149

16. Dataframes

16.7 Exercises

1. Create a dataframe with the names of your colleagues, their age (or an estimate), and their
title.

2. Capitalize the values in the name column.

3. Sum up the values of the age column.

150

Chapter 17

Similarities with Series and DataFrame

We’ve spent a good portion of this book introducing the Series while mostly ignoring the other
pandas class that you will use a lot, the DataFrame. Not to worry! Much of what we have discussed
about series objects are directly applicable to dataframes.

In the next few chapters, we will explore the similarities between the two classes, before diving
into unique features of dataframes in the following chapters.

We will be exploring a dataset from a Siena College Poll in 2018. This data has rankings of
United States Presidents in various attributes.

I was made aware of this dataset when one of my children pointed me to a visualization made
from it. I'm going to pull the raw data and show how to recreate the visualization first. Then we
will demonstrate more features of dataframes with the presidential data.

17.1 Getting the Data

Wikipedia has the data!® from Siena College. I scraped the data using the following commands.
(Given that Wikipedia can change at any time, there is no guarantee that this code will work for

you.):

url = 'https://en.wikipedia.org/wiki/"'\

'"Historical _rankings of presidents of the United States'
pres_dfs = pd.read_html(url)
df = pres _dfs[-4]

After Iloaded the data, I removed some rows (the first and last), renamed the “Political Party”
column to “Party”, and then converted it to a categorical column type:
(df
.iloc[1:-1]
.rename (columns={"'Political party': 'Party'})
.assign(Party=1lambda df_:df_
.Party
.str.replace(r'\[.*\]1', '")
.astype('category'))

Here are the column names with their associated explanation:

¢ Bg = Background

10 https:/ /en.wikipedia.org/wiki/Historical_rankings of_ presidents_of_the United_States

151

https://en.wikipedia.org/wiki/Historical_rankings_of_presidents_of_the_United_States

17. Similarities with Series and DataFrame

¢ Im = Imagination

¢ Int = Integrity

¢ 1Q = Intelligence

¢ L=Luck

¢ WR = Willing to take risks

¢ AC = Ability to compromise

¢ EADb = Executive ability

e LA =Leadership ability

¢ CAb = Communication ability

* OA = Opverall ability

e PL = Party leadership

* RC = Relations with Congress

¢ CAp = Court appointments

¢ HE = Handling of economy

¢ EAp = Executive appointments

e DA = Domestic accomplishments
» FPA = Foreign policy accomplishments
* AM = Avoid crucial mistakes

e EV = Experts’ view

e O =0Overall

At this point, I exported my data and saved it to a CSV (to avoid possible future changes at
Wikipedia). You can load the data from my GitHub account:

>>> import pandas as pd

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/"'\

... 'siena2018-pres.csv'
>>> df = pd.read_csv(url, index_col=0)

>>> df

President Party Bg ... AM EV 0
Seq.
1 George Washington Independent 7 1 2 1
2 John Adams Federalist 3 16 10 14
3 Thomas Jefferson Democratic-Republican 2 7 5 5
4 James Madison Democratic-Republican 4 11 8 7
5 James Monroe Democratic-Republican 9 6 9 8
41 George H. W. Bush Republican 10 ... 17 21 21

152

17.1. Getting the Data

42 Bill Clinton Democratic 21 306 14 15
43 George W. Bush Republican 17 36 34 33
44 Barack Obama Democratic 24 10 11 17
45 Donald Trump Republican 43 41 42 42

[44 rows x 23 columns]

Note that we lose fancy pandas types when we load from CSV, so I will need to set those up

again:

>>> df.dtypes
President object
Party object
Bg int64
Im int64
Int int64
DA int64
FPA int64
AM int64
EV int64
0 int64

Length: 23, dtype: object

Here is a function, tweak_siena_pres, to clean up this data:

>>> def tweak _siena_pres(df):
def int64 to uint8(df):
cols = df_.select dtypes('int64"')
return (df_

.astype({col:'uint8"' for col in cols}))

return (df
.rename(columns={"'Seq."':'Seq"'}) # 1

.rename (columns={k:v.replace(' ', ' ') for k,v in

{'Bg': 'Background',

'"PL': 'Party leadership', 'CAb': 'Communication ability',
'Court appointments',
'"HE': 'Handling of economy', 'L': 'Luck',

'RC': 'Relations with Congress', 'CAp':

"AC': 'Ability to compromise', 'WR': 'Willing to take risks',

"EAp': 'Executive appointments', 'OA': 'Overall ability',

"Im': 'Imagination', 'DA': 'Domestic accomplishments',

"Int': '"Integrity', 'EAb': 'Executive ability',

"FPA': 'Foreign policy accomplishments',
"LA': 'Leadership ability',

'IQ': '"Intelligence', 'AM': 'Avoid crucial mistakes',

"EV': "Experts' view", '0O': 'Overall'}.items()})

.astype({'Party':'category'}) # 2
.pipe(int64 to uint8) # 3

.assign(Av

Qu

)

erage _rank=lambda df :(df_ .select dtypes('uint8') # 4
.sum(axis=1).rank(method="'dense').astype('uint8')),

artile=lambda df_:pd.qcut(df_.Average rank, 4,
labels="1st 2nd 3rd 4th'.split())

We will go over all of the functionality exposed in the tweak_siena_pres function in detail in later
chapters. I will briefly explain the chained operations.

153

17. Similarities with Series and DataFrame

Create a tweak _ Function

show
Obs Date Precip. Snowfall T. Obs
1980/01/01 0.1 1 25
1 1980/01/02 T . 0 18
String column String column (has "T")

The 1ambda in the .assign method gets the intermediate dataframe!

def tweak snow(df):
return (df
.rename(columnsqlambda c: c.lower().replace(' ', ' ').replace('.', '"))
.assign(obs_date=lambda df2: pd.to datetime(df2.obs date),
precip=df ['Precip.'].replace('T', 0).astype(float)))

obs_date precip snowfall t_obs
1980-01-01 0.10 1 25
1 1980-01-02 0.00 0 18

Figure 17.1: A tweak function is useful for maintaining order and sanity when working in Jupyter.

The first call to .rename (#1) removes the period from the column named Seq.. The next .rename
call uses a dictionary comprehension to replace the shorted column names with the longer names
but also replaces spaces with underscores. The call to .astype (#2) sets the type of the Party column
to category. The resulting dataframe is passed to the int64_to_uint8 function with the .pipe call
(#3). This converts all the int64 columns to unsigned 8-bit columns (since all of the numeric data
is below 44 we can store this information in a smaller type). The final call to .assign creates an
Average_rank column by summing all of the numeric values of a row and then taking the dense rank
of the resulting values. It also creates a Quartile column by binning the Average_rank column into
four bins.

Note

You will see many examples of “tweak” functions later in this book. This is a pattern I like to
follow. At the top of my Jupyter notebook, I will load the raw data into a dataframe. Then
in the cell below that, I will make a tweak function (usually written with this chain style) that
takes the raw data and returns a cleaned-up dataset.

This is advantageous for a few reasons. If you have used Jupyter for a while, then you will
know that your notebook may get unwieldy, it has many cells, and you may have executed
them in an arbitrary order as you were working. When you come back to your notebook, it
can be hard to get back to the state where your data is in the form that you want it to be. If you
follow this pattern, it makes it easy to open up a notebook, load the raw data, and then clean it
up in the next cell.

Another advantage of writing this as a function is that you can pull this out and leverage it
in production code.

I strongly recommend that you start adopting this practice in your notebooks, and it will
provide a big improvement to your data workflow.

154

17.2. Viewing Data

With this cleaned up data, we can combine it with the Seaborn library to visualize the data. We
will make a heatmap with Seaborn, then we will right align the labels, rotate them, and add a title
to the plot:

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(10,18), dpi=600)

>>> g = sns.heatmap((tweak _siena_pres(df)
.set_index('President')
.iloc[:,2:-1]

...),annot=True, cmap='viridis', ax=ax)

>>> g.set xticklabels(g.get xticklabels(), rotation=45, fontsize=8,

- ha='right')

>>> = plt.title('Presidential Ranking')

>>> fig.savefig('img/pandas2/20-pres.png', bbox_inches='tight")

But the purpose of this chapter is not to look at visualizations, rather to see that most of what
you can do with a series you can do with a dataframe. Let’s start comparing.

17.2 Viewing Data

Dataframes have .head and .tail methods to view the first or last few rows of the data. I also like
to use .sample, as my experience is that the first few rows of data often do not represent the data as
a whole. The rows at the top may be missing some entries or are test data:

>>> pres = tweak_siena_pres(df)
>>> pres.head(3)

President Party ... Average_rank Quartile
Seq.
1 George Washington Independent ... 1 1st
2 John Adams Federalist ... 13 2nd
3 Thomas Jefferson Democratic-Republican ... 5 Tst

[3 rows x 25 columns]

>>> pres.samnple(3)

President Party ... Average _rank Quartile
Seq. .
18 Ulysses S. Grant Republican ... 24 3rd
36 Lyndon B. Johnson Democratic ... 16 2nd
21 Chester A. Arthur Republican ... 34 4th

[3 rows x 25 columns]

Method Description

.head(n=b) Return a dataframe with the first n values.

.tail(n=5) Return a dataframe with the last n values.

s.sample(n=None, frac=None, Return a dataframe with n random entries. Can also
replace=False, weights=None, specify a fraction with frac (if frac > 1, my specify
random_state=None, axis=None) replace=True).

Table 17.1: Dataframe viewing Methods

155

17. Similarities with Series and DataFrame

Presidential Ranking

George Washington 1 11 218 1 1 1 1 2 2
John Adams 21 13 8 28 17 4 13 15 19 13
Thomas Jefferson 6 4 4 5 5 7 20 4 6 9
James Madison 1710 6 9 10 6 14 7 11 19
James Monroe 12 15 17 12 8 11 9 9 10 5 — 40
John Quincy Adams 23 12 16129 29 15 17 18 21 15

I IETRE ST 15 /297281 4 4 EfJ11 9 18 19 6 16180 25 25 17 23
Martin Van Buren [PARVVAVAEVLS 28 20 28 27 25 27 16 25 31 26 29

William Henry Harrison P44 38 743 37 44 37 36 41 40 42
John Tyler 22 26 j 5

NECL AL 19 10 23 23 9 7 11 16 'IZ 10
Zachary Taylor €0 25

Millard Fillmore 39 40 39 40
Franklin Pierce 138 39 38 40 39 38 39 39 40 41 40 39 38 41 40 39 41 39 38 40 40 41
James Buchanan |3 40 39 42 41 40 42 44 42 43 42
Abraham Lincoln
Andrew Johnson 43 43 43 44 42 44
Ulysses S. Grant 24 26 18 17 27 18 26 26 24
Rutherford B. Hayes 29 23 23 30 31
James A. Garfield 20 3 30 25 25 24 23 24 27
‘qc'; Chester A. Arthur 17 22 30 g 5
kel Grover Cleveland 22 19
@ Benjamin Harrison
& William McKinley 21 17 19 22 20 11
Theodore Roosevelt 15 4 4 5 5 7
William Howard Taft 19 23 26 21 23 30
Woodrow Wilson 14 14 7 14 8
Warren G. Harding 40 40 41 39 41 38
Calvin Coolidge 36 i 1K1 39 27 37 26
Herbert Hoover IRE] 43 37 36) 36
Franklin D. Roosevelt 16 12 5 3 4 3 3 2 3
Harry S. Truman 16 9 21 12 8 12 8 10 14 10 14
Dwight D. Eisenhower 18 5 17 7 21 5 5 5 20 7 15
John F. Kennedy 5@BF118F 9 8 12 8 3 11 17
Lyndon B. Johnson 11 222510 9 9 1317 9 3
Richard Nixon Al 43 R 30 24 28 27 25 22 vyAR[Y 42 38|
Gerald Ford 10130 30 29 1131 30 30 25 31 28 21
Jimmy Carter 19 3 15 gk} 27 29 24 28 28 25 26
Ronald Reagan 17 24781 3 1310 15 7 6 18 4 16 12 12 16
George H. W. Bush 27 18 19 20 27 13 20 22 28 21 21 29 28 19 26 10 17 21
Bill Clinton 12 KLl 8 11 17 3 15 8 13 13 10 5 12 14
George W. Bush 29 <E1EAN 21 20 28 <jll 38 38 Qi) 28 [E[29 30 ELR
Barack Obama 11 13 9 15 23 16 9 15 23 14 10 13 13 20 10
Donald Trump 40 44 44 QLA 42 43 44 43 40 39 44 40 42 41
& & i ° F & & R & © & & »
(s\oo&‘ A\sz;\\o 6@9‘\1\ &oo \)\,3" e}\%" < © ,‘,‘6%* ,b‘é&\\ ’b,o\\‘6 %6§\1> éé‘q(&@%b \&é\%o & \@6\ & &é‘e \c}.z‘,&aé /4\304@‘& e)é&
‘b'z’& \4‘& A \5&\ 07# Q@Q ®°/«$Q/$°Q/4®‘7}\/ >°0‘v\v° Q&(\ é\%o & é\‘é\ é\‘é\n}’ < &‘&
& & F O Q"’&\ F FE LS S < v
&N ¥ & & & F >
¥ & é’b\ A Qﬁgp & & VAO
<& £ 09
7 O

Figure 17.2: Visualization of United States presidential attributes.

156

17.3. Summary

17.3 Summary

This chapter demonstrated loading data from Wikipedia and then cleaned up the data, creating
a “tweak” function. If you follow this pattern of making a function to clean up your data, it will
make your life much easier when using pandas.

17.4 Exercises
With a tabular dataset of your choice:

1. Create a dataframe from the data.
2. View the first 20 rows of data.

3. Sample 30 rows from your data.

157

Chapter 18
Math Methods in DataFrames

We have seen that you can perform math operations on Series objects in pandas. In this chapter,
we will show that you can also do math on dataframes.
We will begin by looking at the basic math operations. We will use a cleaned up version of the
data:
>>> yrl = 'https://github.com/mattharrison/datasets/raw/master/data/"\

e. 'siena2018-pres.csv'
>>> df = pd.read csv(url, index _col=0)

>>> pres = tweak _siena_pres(df)

18.1 Index Alignment

We can perform math operations of the dataframe. There are the math methods like .add and .div
and we also have dunder methods that allow us to use the operators like +, -, /, and *.

Note that the index will align when we perform math. To demonstrate alignment, I will add the
values from index values at rows 0-2 and column positions at index 0-3 and add then to the index
values from rows 1-5 and 0-4:
>>> scores = (pres
.loc[:, 'Background':"'Average _rank ']

)

>>> scores

Background Imagination ... Overall Average_rank
Seq.
1 7 7 1 1
2 3 13 14 13
3 2 2 5 5
4 4 6 7 7
5 9 14 8 8
41 10 27 ... 21 21
42 21 12 ... 15 15
43 17 29 ... 33 33
44 24 m ... 17 17
45 43 40 ... 42 42

[44 rows x 22 columns]

We will pull out two sections of the data:

159

18. Math Methods in DataFrames

>>> s1 = scores.iloc[:3, :4]
>>> g1

Background Imagination Integrity Intelligence

Seq.

1 7 7 1 10
2 3 13 4 4
3 2 2 14 1

>>> g2 = scores.iloc[1:6, :5]
>>> g2

Background Imagination Integrity Intelligence Luck

Seq.

2 3 13 4 4 24
3 2 2 14 1 8
4 4 6 3 16
5 9 14 11 18 6
6 1 9 5 29

Now let’s add these together.

>>> sl + s2
Background Imagination Integrity Intelligence Luck

Seq.

1 NaN NaN NaN NaN NaN
2 6.0 26.0 8.0 8.0 NaN
3 4.0 4.0 28.0 2.0 NaN
4 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN

Only the overlapping rows (rows 2 and 3) and columns (Background through Intelligence) get
added together. The other values are missing!

18.2 Duplicate Index Entries

If you have duplicate index values, each index value in the left dataframe will match up with
the index in the right dataframe. You should be aware if you have repeated index values before
performing operations that align the index.

Lets add a dataframe that has duplicated values in the index (created by concatenating the
dataframe with itself):

>>> scores.iloc[:3, :4] + pd.concat([scores.iloc[1:6, :5]]1*2)
Background 1Imagination Integrity Intelligence Luck

Seq.

1 NaN NaN NaN NaN NaN
2 6.0 26.0 8.0 8.0 NaN
2 6.0 26.0 8.0 8.0 NaN
3 4.0 4.0 28.0 2.0 NaN
3 4.0 4.0 28.0 2.0 NaN
4 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN

160

18.3. Summary

[11 rows x 5 columns]

>>> pd.concat([scores.iloc[1:6, :5]]*2).index.duplicated().any()

True

Method

Description

.add(other, axis='columns', level=None,
fill_value=None)

.sub(other, axis='columns', level=None,
fill_value=None)

.mul(other, axis='columns', level=None,
fill_value=None)

.div(other, axis='columns', level=None,
fill_value=None)

.truediv(other, axis='columns',
level=None, fill_value=None)

.floordiv(other, axis='columns',
level=None, fill value=None)

.mod(other, axis='columns', level=None,
fill_value=None)

.pow(other, axis='columns', level=None,
fill_value=None)

Add other to dataframe across axis. Unlike operator,
can specify fill_value.

Subtract other from dataframe across axis. Unlike
operator, can specify fill_value.

Multiply other with dataframe across axis. Unlike
operator, can specify fill_value.

Divide dataframe by other across axis. Unlike
operator, can specify fill_value.

Same as .div.

Integer divide dataframe by other across axis. Unlike
operator, can specify fill_value.

Perform modulo operation with other across axis.
Unlike operator, can specify fill_value.

Raise to other power across axis. Unlike operator,
can specify fill_value.

Table 18.1: Dataframe Math Methods

18.3 Summary

In this chapter, we demonstrated math operations on dataframes. I generally perform math
operations on series but it is nice to have the capability in dataframes. We also demonstrated index

alignment.

18.4 Exercises

With a tabular dataset of your choice:

1. Create a dataframe from the data and add it to itself.

2. Create a dataframe from the data and multiply it by two.

3. Are the results from the previous exercises equivalent?

161

Chapter 19
Looping and Aggregation

Often we want to apply operations over items in a dataframe. We may want to use looping, the
.apply method, or an aggregation method to do this.

19.1 For Loops

You can use a for loop with a dataframe, though you generally want to avoid for loops when doing
numerical manipulation. When I see a for loop with pandas code, it means this is a slow operation,
and you are not able to take advantage of the vectorization that speeds up many operations.
However, sometimes a for loop is appropriate (I use them when labeling plots).

If you need to loop over a dataframe, here are three methods for doing it. The . iteritems method
gives you a tuple with the column name and the column (a series). The . iterrows method gives you
a tuple with the index value and the row (converted into a series). Finally, the .itertuples method
gives you a row represented as a named tuple (with the index in position 0):
>>> # iteration over columns (col_name, series) tuple
>>> for col_name, col in pres.iteritems():

print(col_name, type(col))
.. break
Seq <class 'pandas.core.series.Series'>

>>> # iteration over rows (index, row(as a series)) tuple
>>> for idx, row in pres.iterrows():

print(idx, type(row))

break
1 <class 'pandas.core.series.Series'>

>>> # iteration over rows as namedtuple (index as first item)
>>> for tup in pres.itertuples():
print(tup[0], tup.Party)
.. break
1 Independent

19.2 Aggregations

The aggregations that are found in a series are also applicable to a dataframe. You need to keep in
mind that a dataframe has two dimensions. This means you can aggregate across both dimensions.
So you can sum along axis 0 (the index) or axis 1 (the columns). In this example, we will calculate

163

19. Looping and Aggregation

the average of each row. We will isolate the numeric columns using . loc, then we will sum along
the columns and divide the result by the length of the columns:

>>> scores = (pres
.loc[:, 'Background':"'Average _rank ']

o)

>>> scores.sum(axis="'columns') / len(scores.columns)
Seq.

1 3.681818

2 14.454545

3 6.545455

4 9.636364

5 10.454545

41 20.818182
42 14.636364
43 30.363636
44 15.818182
45 39.772727
Length: 44, dtype: float64

(Note we could also use .mean(axis=1) to do the above.)
We can use multiple aggregations with the .agg method. Below, we will count the number of
non-missing values for each column, the number of entries for each column (including the missing

values), the sum of each column, and run a custom aggregation (that just returns the value for
index 1):

>>> pres.agg(['count', 'size', 'sum', lambda col: col.loc[1]])

Seq ... Quartile
count 44 . 44
size 44 .. 44
sum 12345678910111213141516171819202122/2423252627... ... NaN
<lambda> 1T ... 1st

[4 rows x 26 columns]

We can pass in a dictionary to perform multiple aggregations on a column:

>>> pres.agg({'Luck': ['count', 'size'], 'Overall': ['count', 'max']})
Luck Overall

count 44.0 44.0

size 44.0 NaN

max NaN 44 .0

You can use a keyword argument with a tuple to specify the index value of the resultant
aggregation:

>>> pres.agg(Intelligence count=('Intelligence', 'count'),
Intelligence_size=('Intelligence', 'size')
)
Intelligence
Intelligence_count 44
Intelligence_size 44

The .describe method is a meta-aggregation that returns a dataframe with summary statistics
for each numeric columns:

>>> pres.describe()
Background Imagination ... Overall Average_rank
count 44.000000 44.000000 ... 44.000000 44.000000

164

19.2. Aggregations
The .describe Method
mpg
make year city08 highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
M
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21
mpg.describe() - Summary statistics for numeric columns
*Use include="all' to show other types
« Count is non-NA values
year city08 highway08
count 41144.00 41144.00 41144.00
mean 2001.54 18.37 24.50
std 11.14 7.91 7.73
min 1984.00 6.00 9.00
25% 1991.00 15.00 20.00
50% 2002.00 17.00 24.00
75% 2011.00 20.00 28.00
max 2020.00 150.00 124.00

Figure 19.1: The .describe method provides the count of non-missing values, the mean, standard deviation,

minimum, maximum, and quartiles.

mean 22.000000 21.756000 ... 22.500000 22.500000
std 12.409674 12.519984 ... 12.845233 12.845233
min 1.000000 1.000060 ... 1.0060000 1.000000
25% 11.750000 11.6006600 ... 11.7506000 11.750000
50% 22.000000 21.560000 ... 22.500000 22.500000
75% 32.250000 32.250000 ... 33.250000 33.250000
max 43.000000 43.000000 ... 44.000000 44.000000

[8 rows x 22 columns]

165

19. Looping and Aggregation
Note

The count row in the summary statistics has a particular meaning in pandas. It is not the count
of the rows, rather it is the count of the non-missing (not na) rows.

19.3 The .apply Method

Like the series, the dataframe has an .apply method. Like the series method, you should be wary of
using the dataframe method. More specifically, if you are dealing with numbers, you might want
to see if you can operate in a vectorized way.

Also, keep in mind that a dataframe is two-dimensional. So rather than applying a function to
a single value, when you call .apply on a dataframe, you work on a whole row or a whole column.
Because of that, I find that I rarely use this method.

Most of the .apply examples you find in the wild are silly examples that show how .apply works,
but also give a false impression that you should be everywhere, including using it for these silly
examples.

For example, if you wanted to calculate the spread of the presidential rankings for each row, I
would do this:
>>> (pres
.select_dtypes('number"')

.pipe(lambda df_:df_ .max(axis='columns"')
- df_.min(axis='columns'))

el)
Seq.

1 17
2 28
3 19
4 16
5 13
41 19
42 36
43 24
44 22
45 34

Length: 44, dtype: uint8
The .apply version looks like this:

>>> (pres
.select_dtypes('number")
.apply(lambda row: row.max()-row.min(), axis='columns"')

o)
Seq.

1 17
2 28
3 19
4 16
5 13
41 19
42 36
43 24
44 22

166

19.3. The .apply Method

45 34
Length: 44, dtype: int8

They look pretty similar but the former does an optimized max and min calculation, while the
latter does a separate calculation for each row.

Or you might see an example showing how to use .apply on the index axis. If you use .apply
with axis='index', it calls the function on each column. You might encounter silly examples like
calculating the sum of each column:

>>> pres.select_dtypes('number').apply('sum') # axis=0

Background 968
Imagination 957
Integrity 990
Intelligence 990
Luck 990
Foreign_policy_accomplishments 990
Avoid _crucial_mistakes 990
Experts' _view 990
Overall 990
Average_rank 990

Length: 22, dtype: inté4

In this case, it will calculate a sum on each column, but why not just do one call and get the
same result?

>>> pres.select_dtypes('number').sum() # axis=0

Background 968
Imagination 957
Integrity 990
Intelligence 990
Luck 990
Foreign_policy_accomplishments 990
Avoid_crucial_mistakes 990
Experts' view 990
Overall 990
Average_rank 990

Length: 22, dtype: inté64

I have used .apply when replicating complicated logic from spreadsheets. Here is a snippet of
sample data:

>>> import io

>>> billing data = \
"''cancel _date,period_start,start_date,end date,rev,sum_payments
12/1/2019,1/1/2620,12/15/2019,5/15/2020,999,50
,1/1/2020,12/15/2019,5/15/2020,999,50
,1/1/2020,12/15/2619,5/15/2020,999,1950
1/20/2020,1/1/2620,12/15/2019,5/15/2020,499,0
,1/1/2020,12/24/2019,5/24/2020,699,100
,1/1/2620,11/29/2619,4/29/2020,799,250
,1/1/208208,1/15/2020,4/29/2020,799,250"' "'

>>> bill df = pd.read csv(io.StringI0O(billing data),
parse_dates=['cancel date', 'period start', 'start date',

'end date'])

>>> bill_df

167

19. Looping and Aggregation

cancel date period start

0 2019-12-01
1 NaT
2 NaT
3 2020-01-20
4 NaT
5 NaT
6 NaT

2020-01-01
2020-01-01
2020-01-01
2020-01-01
2020-01-01
2020-01-01
2020-01-01

start_date
2019-12-15
2019-12-15
2019-12-15
2019-12-15
2019-12-24
2019-11-29
2020-01-15

end_date
2020-085-15
2020-085-15
2020-685-15
2020-05-15
2020-05-24
2020-04-29
2020-04-29

rev
999
999
999
499
699
799
799

sum_payments

50
50
1950
0
100
250
250

Here is some logic. If the start and end dates bound the period start date, we calculate if the
revenue is greater than the sum of the payments:

>>> def calc_unbilled rec(vals):
cancel date, period _start, start _date, end _date, rev, \
sum_payments = vals
if cancel_date < period_start:
return
if start_date < period_start and end_date > period_start:
if rev > sum_payments:
return rev - sum_payments
else:
return 0

We can use .apply to call this function with the values from each row. Note that to apply itto a
row we need to pass in axis="'columns':

>>> bill_df.apply(calc_unbilled rec, axis='columns')
0 NaN
1 949.0
2 0.0
3 499.0
4 599.0
5 549.0
6 NaN
d

type: floaté4

Below is an attempt to vectorize this with np.select. Sadly this runs about twice as slow on my
machine on this small dataset. However, if the dataset has a hundred thousand rows, it runs about
200 times faster!

>>> import numpy as np
>>> pd.Series(np.select ([
(bill_df.cancel _date < bill _df.period start),
((bill_df.start_date < bill _df.period start) &
(bill_df.end _date > bill_df.period_start) &
(bill df.rev > bill _df.sum_payments)),
((bill_df.start_date < bill df.period start) & # 3
(bill_df.end_date > bill_df.period_start) &
(bill_df.rev <= bill_df.sum_payments))
1,
[np.nan, bill df.rev - bill _df.sum _payments, 0],
np.nan)) # default
NaN
949.0
0.0
499.0
599.0
549.0
NaN

1
2

#1, 2,3

[oa NG I S R e =)

168

19.4. Summary

dtype: floaté4

Note

Be careful with your timing. It is not necessarily the case that code that is slower on small
datasets is slower on larger datasets!

Method Description
.iteritems() Iterate over a tuple of column name and series.
.iterrows() Iterate over tuple of index name and row (presented

.itertuples(index=True, name="Pandas")

.sum(axis=0, skipna=True, level=None,
numeric_only=None, min_count=0

.min(axis=0, skipna=True, level=None,
numeric_only=None

.max(axis=0, skipna=True, level=None,
numeric_only=None

.idxmin(axis=0, skipna=True)

.idxmax(axis=0, skipna=True)

.agg(func=None, axis=0, *args, **kwargs)

as a series). Type information not preserved.
Iterate over a namedtuples of rows. Include index by
default. Use name to specify the classname of the
namedtuple (or set to None to return normal tuples).
Return sum over axis. Default of empty sequence is
0, set min_count=1 to return nan.
Return minimum over the axis.

Return maximum over the axis.

Return the index of first minimum value over the
axis.

Return the index of first maximum value over the
axis.

Aggregate using func over the axis. The func can be a

function that collapses a column (or row), string,
list of functions (or strings), dictionary of axis to
function, list, or string.
.describe(percentiles=[.25, .5, .75], Return summary statistics for dataframe.
include=None, exclude=None,
datetime_is_numeric=False)
.apply(func=None, axis=0, raw=False,
result _type=None, *args, **kwargs)

Apply func over the axis. If func returns a sequence
then return a dataframe. If func returns a scalar,
then return a series.

Simulate an if then statement. Pass in a list of
boolean arrays to condlist and the corresponding
value in the list choicelist.

Table 19.1: Dataframe Looping Methods

np.select(condlist, choicelist, default=0

19.4 Summary

In this chapter, we demonstrated looping and aggregation methods of dataframes. We also
demonstrated the .apply method.

19.5 Exercises
With a tabular dataset of your choice:

1. Loop over each of the rows and calculate the maximum and minimum value.

169

19. Looping and Aggregation

2. Calculate the maximum and minimum value of each row and column using the .agg method.

3. Calculate the maximum and minimum value of each row and column using the .apply
method.

170

Chapter 20

Columns Types, .assign, and Memory Usage

In this chapter, we will explore updating columns, creating columns, and changing the types of
columns. We will show how to see how this impacts memory usage.

20.1 Conversion Methods

There are various methods and functions for changing the types of a series in pandas. We can all
.astype to update column types. Or we can use the .assign method to return a new dataframe with
the updated type.

The .astype method allows us to specify the types of each column with a dictionary.

The .assign method is a key method to master. You specify the name of a column with a
keyword argument. If the argument name is an existing column, it will change the values of the
column. If the argument name is a new column, it creates a new column. One caveat is that this
method returns a new dataframe, it does not mutate the existing dataframe.

You should also know that you can pass in a scalar value, a series, or a callable as the value
for the keyword argument. The callable (a function or lambda) should accept the current state of
the dataframe (this is important when chaining because each step returns a new dataframe), and
should return a scalar or series.

We saw some examples of these methods in the tweak_siena_pres and int64_to_uint8 functions.
Here are the relevant snippets:

def tweak siena pres(df):
def int64 to_uint8(df_):

...
return (df_
.astype({col:'uint8"' for col in cols}))
return (df

#o...
.astype({'Party':'category'})
.pipe(int64_to_uint8)
.assign(Average rank=lambda df :(df_.select dtypes('uint8"')
.sum(axis=1).rank(method="'dense').astype('uint8')),
)

171

20. Columns Types, .assign, and Memory Usage

20.2 Memory Usage

One thing to be aware of is memory usage. You can often shrink the memory usage of a dataframe
by changing the type while not losing any data.
Here is the original column sizes of the presidential data:

>>> df.memory _usage(deep=True)

Index 3662
President 3175
Party 2976
Bg 352
Im 352
DA 352
FPA 352
AM 352
EV 352
0 352

Length: 24, dtype: int64

Here are the sizes of the columns where the numeric values have been optimized:

>>> pres.memory usage(deep=True)

Index 3662
President 3175
Party 624
Background 44
Imagination 44
Avoid _crucial_mistakes 44
Experts' view 44
Overall 44
Average rank 44
Quartile 456

Length: 26, dtype: int64

You can see that the ranking columns use less memory because they are stored as uint8 values
instead of int64.

If you are in a REPL and do not need to manipulate the results of the .memory_usage, an alternative
is to call .info, which does not return a series, but prints the result to the screen:
>>> pres.info(memory usage="'deep')
<class 'pandas.core.frame.DataFrame'>

Index: 44 entries, 1 to 45
Data columns (total 25 columns):

Column Non-Null Count Dtype
0 President 44 non-null object
1 Party 44 non-null category
2 Background 44 non-null uint8
3 Imagination 44 non-null uint8
4 Integrity 44 non-null uint8
5 Intelligence 44 non-null uint8
6 Luck 44 non-null uint8
7 Willing_to_take_risks 44 non-null uint8
8 Ability_to_compromise 44 non-null uint8
9 Executive _ability 44 non-null uint8
10 Leadership_ability 44 non-null uint8
11 Communication_ability 44 non-null uint8

172

20.3. Summary

12
13
14
15
16
17
18
19
20
21
22
23
24

Overall _ability 44
Party_leadership 44
Relations_with_Congress 44
Court_appointments 44
Handling_of_economy 44
Executive_appointments 44
Domestic_accomplishments 44
Foreign_policy_accomplishments 44
Avoid _crucial_mistakes 44
Experts' view 44
Overall 44
Average rank 44
Quartile 44

dtypes: category(2), object(1), uint8(22)
memory usage: 8.7 KB

Method

non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null uint8
non-null category
Description

.astype(dtype, copy=True, errors='raise')

.assign(**kwargs)

.memory_usage(index=True, deep=False)

.info(verbose=None, buf=None,
max_cols=None, memory_usage=None,
show_counts=None)

Cast dataframe into dtype. (More common to use this

on series.)

Return a new dataframe with updated or new
columns. kwargs maps column name to function,
scalar, or series. If using a function, it is passed in
the current state of the dataframe and should
return a scalar or series. Subsequent columns may
reference earlier columns in kwargs if you use a
function.

Return a series with the memory usage of each
column in bytes. By default includes index. Use
deep=True to show how much space object columns
consume.

Print summary of dataframe to stdout. Use
memory_usage="'deep' to show object column
memory usage.

Table 20.1: Dataframe Methods from this Chapter

20.3 Summary

The series chapters showed how to convert the type of a series from one type to another. With a
dataframe, we want to optimize the types of each column. To create a dataframe with the newer
columns, we use the .assign method. If you master this method you will eliminate many bugs that
pandas users encounter when they try to change columns using other methods.

20.4 Exercises

With a tabular dataset of your choice:

precision?

1. Find a numeric column and change the type of it. Did you save memory? Did you lose

2. Find a string column and convert it to a category. What happened to the memory usage?
Time a few string operations. Are they faster on the categorical column or string column?

173

Chapter 21
Creating and Updating Columns

This chapter explores the “one true way” to create and update columns in pandas. This is
potentially the most controversial subject of this book, probably because it is not talked about very
often, and the syntax might be unclear at first.

21.1 Loading the Data

We will be looking at a dataset of Python users from JetBrains.
Let’s load the data:

>>> import pandas as pd

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/"'\
.. '2020-jetbrains-python-survey.csv'

>>> jb = pd.read _csv(url)

>>> jb

is.python.main other.lang.None ... age country.live
0 Yes NaN ... 30-39 NaN
1 Yes NaN ... 21-29 India
2 Yes NaN ... 30-39 United States
3 Yes NaN ... NaN NaN
4 Yes NaN ... 21-29 Italy
54457 Yes NaN ... 21-29 Russian Federation
54458 Yes NaN ... NaN NaN
54459 Yes NaN ... 21-29 Russian Federation
54460 Yes NaN ... 30-39 Spain
54461 Yes NaN ... 21-29 Algeria

[54462 rows x 264 columns]

This is a pretty good dataset. It has over 50,000 rows and 264 columns. However, we will need
to clean it up to perform exploratory analysis.

Some of the columns have a dummy-like encoding. For example, the columns starting with
database. end with a database name. In the values for those columns, the database name is included.
Because a user might use multiple databases, that is a mechanism to encode this. However, it also
creates many columns, one per database. To keep the data for the book manageable, I'm going to
filter out columns like the database columns.

Mhttps:/ / www.jetbrains.com/Ip / python-developers-survey-2020/

175

https://www.jetbrains.com/lp/python-developers-survey-2020/

21. Creating and Updating Columns

Below is code that determines whether a feature can have multiple values (like database) and
removes those:

>>> import collections
>>> counter = collections.defaultdict(list)
>>> for col in sorted(jb.columns):
period count = col.count('."')
if period _count >= 2:
part_end = 2
else:
part_end = 1
parts = col.split('.')[:part_end]
... counter['.'.join(parts)].append(col)
>>> uniq_cols = []
>>> for cols in counter.values():
if len(cols) == 1:
unigq_cols.extend(cols)

>>> uniq_cols

['age', 'are.you.datascientist', 'company.size',
"country.live', 'employment.status', 'first.learn.about.main.ide’,
"how.often.use.main.ide', 'ide.main', 'is.python.main', 'job.team',
'main.purposes', 'missing.features.main.ide', 'nps.main.ide',
"python.years', 'python2.version.most', 'python3.version.most',
'several.projects', 'team.size', 'use.python.most', 'years.of.coding']

Note that these column names have a period in them. I'm going to replace those with an
underscore as it will allow us to access the names of the columns via attributes (with a period).
Let’s look at the age column:

>>> (jh
[unig_cols]
.rename(columns=1lambda c: c.replace('.', ' "))
.age
.value counts(dropna=False)

e)

NaN 29701

21-29 9710

30-39 7512

40-49 3010

18-20 2567

50-59 1374

60 or older 588

Name: age, dtype: inté4

I'm going to pull out the first two characters from the age column and convert it to numbers.
We will have to convert to float because there are missing values:

>>> (jb
[unig_cols]
.rename(columns=1lambda c: c.replace('.', ' "))
.age
.str.slice(0,2)
.astype(float)

30.0
21.0
30.0

NaN

w - o

176

21.1. Loading the Data

4 21.0
54457 21.0
54458 NaN

54459 21.0
54460 30.0
54461 21.0
Name: age, Length: 54462, dtype: float64

Note

You can also write .str.slice(0,2) as .str[0:2].

Note that currently, pandas (here is the bug'?) can’t convert strings directly to 'Int64', you need to
convert to float first.

>>> (jb

[unig_cols]

.rename (columns=1lambda c: c.replace('.', ' "))
.age

.str.slice(0,2)

. .astype('Int64')

el)
Traceback (most recent call last):

TypeError: object cannot be converted to an IntegerDtype

>>> (jb
[unig cols]
.rename (columns=1lambda c: c.replace('.', ' "))
.age
.str.slice(0,2)
.astype(float)

. .astype('Int64')

el)

0 30

1 21

2 30

3 <NA>

4 21

54457 21

54458 <NA>

54459 21

54460 30

54461 21

Name: age, Length: 54462, dtype: Inté64

Now that this column is cleaned up, let’s put it in a dataframe. This is where .assign comes in.
As a reminder, none of the operations we have looked at in this book mutate or update a series or
dataframe. Instead, they return new series or dataframes. This is what enables the chaining style
we have seen throughout this book.

Sometimes (actually quite often) you will see the internet telling you to do something like this:

2https:/ / github.com/pandas-dev/pandas/issues/ 33254

177

https://github.com/pandas-dev/pandas/issues/33254

21. Creating and Updating Columns

>>> jh2 = jb[unig_cols]

>>> age slice = jb.age.str.slice(0, 2)

>>> age float = age slice.astype(float)

>>> age int = age float.astype('Int64"')

>>> jb2['age'] = age_int

SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user _guide/indexing.html#returning-a-view-versus-a-copy

jb2['age'] = age_int

Sometimes the above code works, but you can see the infamous SettingllithCopyWarning warning
telling you that it might not be working. However, if you use .assign, you sidestep this issue
completely.

Also note that line jb2['age'] = age_int does not return anything. You cannot chain on it! The
.assign method will let you get update or add a column and will also return a dataframe for
chaining:
>>> (jb
[unig_cols]

.rename (columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df _:df_.age

.str.slice(0,2)

.astype(float)

.astype('Int64"'))

age ... years _of coding
0 30 ... 1-2 years
1 21 ... 3-5 years
2 30 ... 3-5 years
3 <NA> ... 11+ years
4 21 ... Less than 1 year
54457 21 ... 1-2 years
54458 <NA> ... 1-2 years
54459 21 ... 6—10 years
54460 30 ... 3-5 years
54461 21 ... 1-2 years

[64462 rows x 20 columns]

Note

When you call .assign you generally pass in a keyword argument corresponding to the column
name to create or update. You can assign the argument to a series, a scalar, or a function. You
will see that many of my examples use lambda functions.

Using a function (it can be a normal function, but often we use a lambda to have the logic
inline) has an unseen benefit. This function will accept the current state of the dataframe. If you
have done any filtering or manipulation in the chain before calling .assign, it will be represented
in this dataframe.

In the example above, my lambda looked like this:

178

21.2. More Column Cleanup

.assign(age=1lambda df :df .age

I could have gotten away without a lambda in this case because the age column was not
renamed. The code could have been this:

.assign(age=jb.age

Later on, we will see updating the country.live and python.years columns. Because we have
a .rename in our chain, we will use a lambda to refer to the new column names, country_live and
python_years respectively.

Another benefit of chaining is that this code reads like a step-by-step recipe. First, we pull out
the columns we want, then rename the columns, and finally update the age column (with its own
recipe).

Once you get used to this style of programming, you will start to think of making step by step
changes to your data. This will make your code easier to read and understand.

Finally, some complain that working from the source data is slow, tedious, and repetitive.
Maybe it is. But, in almost every data project I've been involved with, the boss has come around
and asked for an explanation of the data. Using chaining makes stepping through the explanation
easy. Using the style of pandas espoused by most of the internet makes this a huge headache.

Ok, one more point. Chaining also will enable (future) query engine optimizers to speed up
chained pandas code. Much like SQL optimizers can do predicate pushdown, one could envision
optimizers (or a future tool that supports that pandas API) that work on chains. The use of chain
would enable this.

I'll get off my .assign soapbox here. It appears that many have an almost allergic reaction to
this style of coding. Yet, they aren’t able to present anything better, but the spaghetti code found
everywhere else.

21.2 More Column Cleanup

The are_you_datascientist column can be converted to a boolean column with the .replace method:

>>> import numpy as np
>>> (jb
[unig_cols]
.rename (columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df_:df_.age.str.slice(0,2)
.astype(float).astype('Int64"'),
are_you datascientist=1lambda df : df_.are_you datascientist
.replace({'Yes': True, 'No': False, np.nan: False})
)
.are_you_datascientist
)
False
True
False
False
False

B ORI R e T

54457 False
54458 False
54459 False
54460 True
54461 False
Name: are_you datascientist, Length: 54462, dtype: object

179

21. Creating and Updating Columns

On to the next column. Let’s look at company_size. I'll use the .value_counts method to see
unique values:

>>> (jh
[unig_cols]
.rename(columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df_:df_.age.str.slice(0,2)
.astype(float).astype('Int64"'),
are_you datascientist=1ambda df _: df_.are_you datascientist
.replace({'Yes': True, 'No': False, np.nan: False})
)
.company_size
.value_counts(dropna=False)

o)

NaN 35037
51-500 4608
More than 5,000 3635
11-50 3507
2-10 2558
1,001-5,000 1934
Just me 1492
501-1,000 1165
Not sure 526

Name: company_size, dtype: int64

I'm going to do replacements here as well. It would be possible to split or use a regular
expression to pull out these values. I'm going to pull off the left value of the interval. The code
will look like this:

company _size=lambda df :df .company size.replace({'Just me': 1,
"Not sure': np.nan, 'More than 5,000': 5000,
'2-18': 2, '"11-508':11, '51-500"': 51, 'b601-1,000':501,
'1,001-5,000"':1001}).astype('Int64"),

I'm not going to show the code for each column individually, but here is an overview of the
steps I will take to the columns:

e country_live - Convert to categorical.
e employment_status - Fill missing values with 'Other' and convert to categorical.
* is_python_main - Convert to categorical.

e team_size - Split on en-dash, pull out the first column, replace 'More than 40' with 41, replace
values where company_size is 1 with 1, and convert it to a float.

* years_of_coding - Replace 'Less than 1 year' with .5, then pull out any numbers with a regular
expression, and convert them to floats.

* python_years - Replace ' _' with '.", then pull out any numbers with a regular expression, and
convert them to floats.

* use_python_most - Replace missing values with 'Unknown'.

After the column manipulation, we will drop the python2_version_most column:

180

21.2. More Column Cleanup

>>> jb2 = (jb
[unig _cols]
.rename (columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df_:df_ .age.str.slice(0,2).astype(float)
.astype('Int64"'),
are_you_datascientist=1ambda df_:df_.are_you_datascientist
.replace({'Yes': True, 'No': False, np.nan: False}),
company _size=lambda df_:df_.company _size.replace ({
"Just me': 1, 'Not sure': np.nan,
'More than 5,000': 5000, '2-10': 2, '11-508':11,
'61-500': 51, '501-1,000':501,
'1,001-5,000"':1001}).astype('Int6d"'),
country live=lambda df :df_.country live.astype('category'),
employment_status=1lambda df_:df_.employment_status
.fillna('Other').astype('category'),
is_python_main=1lambda df_:df_.1is_python_main
.astype('category'),
team_size=lambda df_:df_.team_size
.str.split(r'-', n=1, expand=True)
.iloc[:,0].replace('More than 48 people', 41)
.where(df_.company_size!=1, 1).astype(float),
years_of _coding=lambda df_:df_.years_of_coding
.replace('Less than 1 year', .5).str.extract(r'(\d+)")
.astype(float),
python_years=1lambda df_:df_.python_years
.replace('Less than 1 year', .5).str.extract(r'(\d+)")

.astype(float),
python3 ver=lambda df :df .python3 version _most
.str.replace(' ', '.").str.extract(r'(\d\.\d)")
.astype(float),

use_python_most=1lambda df_:df_.use_python_most
.fillna('Unknown")

)
.drop(columns=["'python2 version_most'])
)
The resulting dataframe has clean column names and data that is more amenable to analysis:
>>> jb2
age are_you datascientist ... years of coding python3 ver
0 30 False ... 1.0 3.7
1 21 True ... 3.0 3.6
2 30 False ... 3.0 3.6
3 <NA> False ... 11.0 3.8
4 21 False ... NaN 3.8
54457 21 False 1.0 3.6
54458 <NA> False 1.0 3.7
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7
54461 21 False 1.0 3.8

[54462 rows x 20 columns]

Upon inspection, the team_size column is still missing quite a few entries. It looks like there are
over 5,000 respondents that are employed but neglected to enter a team size:

181

21. Creating and Updating Columns

>>> (jh2
.query('team_size.isna()")
.employment_status
.value_counts(dropna=False)

el)

Fully employed by a company / organization 5279
Working student 696
Partially employed by a company / organization 482
Self-employed 430
Freelancer 0
Other 0
Retired 0
Student 0

Name: employment_status, dtype: inté4

I'm going to use another call to .assign to use machine learning to predict the missing values
for that column. 1 will leverage the CatBoost!? library to do that. A nice feature of this library is
that it will accept missing values and also accept string values (hence the name Category Boosting).
Many machine learning libraries require that all data be numeric and that none of the values are
missing.

While CatBoost works with data from pandas dataframes, it doesn’t like native pandas types
(like 'Int64' or 'category'), so I'm going to make a function, prep_for_ml, that uses two dictionary
comprehensions to change the column types when we make our predictions.

Since this is not a book about machine learning, I will not go deep into what is going on, other
than to say we are training the model on all the rows where team_size is not missing and using the
trained model to predict the missing values. You may wish to use a simpler method like .fillna
to impute these missing values. (You can see I'm kind of punting on the remaining missing values
and just calling .dropna at the end. Also, note that summary statistics might be biased after filling
in the values.)

>>> import catboost as cb
>>> import numpy as np

>>> def prep_for ml(df):
remove pandas types
return (df
.assign(**{col:df[col].astype(float)
for col in df.select_dtypes('number')},
**{col:df[col].astype(str).fillna('")

for col in df.select dtypes(['object', 'category'])})

)

>>> def predict_col(df, col):
df = prep_for_ml(df)
missing = df.query(f'~{col}.isna()")
cat_idx = [i for i,typ in enumerate(df.drop(columns=[col]).dtypes)
if str(typ) == 'object']
(missing
.drop(columns=[col])
.values
)
y = missing[col]
model = ch.CatBoostRegressor(iterations=20, cat _features=cat_idx)

X

Bhttps:/ / catboost.ai/

182

https://catboost.ai/

21.2. More Column Cleanup

model.fit(X,y, cat features=cat idx)
pred = model.predict(df.drop(columns=[col]))
return df[col].where(~df[col].isna(), pred)

With the function to predict the missing values ready let’s give it a try:
>>> jb2 = (jb

[unig _cols]
.rename (columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df_:df_.age.str.slice(0,2).astype(float)
.astype('Int64"'),
are_you_datascientist=1ambda df_:df_.are_you_datascientist
.replace({'Yes': True, 'No': False, np.nan: False}),
company _size=lambda df_ :df .company _size.replace ({
"Just me': 1, 'Not sure': np.nan,
'More than 5,000': 5000, '2-10': 2, '11-50':11,
'51-500': 51, '501—1,000':501,
'1,001-5,000"':1001}).astype('Int64"),
country live=lambda df :df_.country live.astype('category'),
employment_status=lambda df_:df_.employment_status
.fillna('Other').astype('category'),
is_python_main=1lambda df_:df_.is_python_main
.astype('category'),
team_size=lambda df :df_.team _size
.str.split(r'-', n=1, expand=True)
.iloc[:,0].replace('More than 48 people', 41)
.where(df_.company_size!=1, 1).astype(float),
years_of coding=lambda df_:df_.years_of _coding
.replace('Less than 1 year', .5).str.extract(r'(\d+)")
.astype(float),
python_years=1lambda df_:df_.python_years
.replace('Less than 1 year', .5).str.extract(r'(\d+)")

.astype(float),
python3 ver=lambda df_:df_.python3 _version_most
.str.replace('_ ', '.").str.extract(r'(\d\.\d)")
.astype(float),

use_python_most=1lambda df_:df_.use_python_most
.fillna('Unknown")

)
.assign(team_size=1lambda df :predict col(df , 'team size')
.astype(int))

.drop(columns=["'python2 version _most'])

.dropna()
)
>>> jbh2

age are_you datascientist ... years of coding python3 ver
1 21 True ... 3.0 3.6
2 30 False 3.0 3.6
10 21 False 1.0 3.8
1 21 True 3.0 3.9
13 30 True 3.0 3.7
54456 30 False 6.0 3.6
54457 21 False 1.0 3.6
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7
54461 21 False 1.0 3.8

183

21. Creating and Updating Columns

[13711 rows x 20 columns]

At this point, I'm pretty satisfied with my chain (I would generally develop and debug this
chain link by link using Jupyter). What I like to do is create a function (I generally name it tweak_*)
and put it right at the top of my Jupyter notebook, in the cell below the cell where I load the raw
data. This makes it easy to open up a notebook, load the raw data and then run my tweak function
to clean it up. After that, I'm off and running. If I find that I need to modify my dataframe further,
I will update the tweak function, so all of my changes can be found in one place. This takes a little
discipline to program pandas in this way, but you will reap benefits as your code will be easier to
use, understand, and debug]!

Here is my what my cleaned up code will look like:

>>> import catboost as cb
>>> import numpy as np
>>> import pandas as pd

>>> import collections

>>> def get unig cols(jh):
counter = collections.defaultdict(list)
for col in sorted(jb.columns):
period count = col.count('."')
if period_count >= 2:
part_end = 2
else:
part_end =1
parts = col.split('.')[:part_end]
counter['.'.join(parts)].append(col)
unig_cols = []
for cols in counter.values():
if len(cols) == 1:
uniq_cols.extend(cols)
return uniq_cols

>>> def prep_for ml(df):
- # remove pandas types
return (df
.assign(**{col:df[col].astype(float)
for col in df.select_dtypes('number')},
**{col:df[col].astype(str).fillna('")
for col in df.select dtypes(['object', 'category'])})
)

>>> def predict_col(df, col):
df = prep_for_ml(df)
missing = df.query(f'~{col}.isna()")

cat_idx = []
for i,typ in enumerate(df.drop(columns=[col]).dtypes):
if str(typ) == 'object':
cat_idx.append(i)
X = (missing
.drop(columns=[col])
.values
)

y missing[col]
model = ch.CatBoostRegressor(iterations=20, cat features=cat idx)
model.fit(X, y, cat features=cat_idx)

184

21.2. More Column Cleanup

pred = model.predict(df.drop(columns=[col]))
return df[col].where(~df[col].isna(), pred)

>>> def tweak_jb(jb):
uniq_cols = get unig_cols(jh)
return (jb
[unig_cols]
.rename (columns=1lambda c: c.replace('.', ' "))
.assign(age=1lambda df_:df_.age.str.slice(0,2).astype(float)
.astype('Int64"'),
are_you_datascientist=1ambda df_:df_
.are_you_datascientist
.replace({'Yes': True, 'No': False, np.nan: False}),
company_size=lambda df_:df_.company _size.replace ({
"Just me': 1, 'Not sure': np.nan,
'"More than 5,000': 5000, '2-10': 2, '11-50':11,
'51-500"': 51, '501-1,000':501,
'1,001-5,000"':1001}).astype('Int64 "),
country live=1lambda df_:df_ .country live
.astype('category'),
employment_status=1lambda df_:df_.employment_status
.fillna('Other').astype('category'),
is_python_main=1lambda df _:df _.is_python _main
.astype('category'),
team_size=1lambda df_:df_.team_size
.str.split(r'-', n=1, expand=True)
.iloc[:,0].replace('More than 48 people', 41)
.where(df _.company size!=1, 1).astype(float),
years of coding=lambda df_:df_ .years of coding
.replace('Less than 1 year', .5)
.str.extract(r'(\d+)"').astype(float),
python_years=1lambda df_:df_.python_years
.replace('Less than 1 year', .5)
.str.extract(r'(\d+)').astype(float),
python3 ver=lambda df_:df_.python3 version_most
.str.replace('_', '.'").str.extract(r'(\d\.\d)")
.astype(float),
use_python_most=1lambda df_:df_.use_python_most
.fillna('Unknown")

)
.assign(team_size=lambda df :predict col(df_, 'team size')
.astype(int))
.drop(columns=["'python2 version_most'])
.dropna()

-)

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/"\
'2020-jetbrains-python-survey.csv'

>>> jb = pd.read csv(url)

>>> jb2 = tweak_jb(jb)

Method Description
.rename (mapper=None, index=None, Change axis labels. Pass columns or index as a
columns=None, axis=0, copy=True, dictionary (mapping old values to new values) or a
level=None, errors='ignore') function (accepting the old value and returning the
new value).

185

21. Creating and Updating Columns

.replace(to_replace=None, value=None,
limit=None, regex=False, method='pad')

.drop(labels=None, axis=0, index=None,
columns=None, level=None,
errors='raise')

.dropna(axis=0, how='any', thresh=None,
subset=None)

.query(expr)

.assign(**kwargs)

Replace values from to_replace (string, regular
expression, number, series or list of previous,
dictionary (mapping replacement if value is None),
series, or None) with value. If to_replace is a list and
there is no value you can bfill or ffi1ll with method.

Drop rows or columns with specified labels. Use
columns="'age' rather than labels='age', axis='1".

Drop rows (axis=0) or columns (axis=1) with missing
values. Require certain amount missing with
thresh. Limit columns with subset.

Evaluate expr to filter dataframe. Refer to variables
by prefixing with @. Use backticks around column
names with spaces.

Return a new dataframe with updated or new
columns. kwargs maps column name to function,
scalar, or series. If using a function, it is passed in
the current state of the dataframe and should
return a scalar or series. Subsequent columns may
reference earlier columns in kwargs if you use a
function.

Table 21.1: Dataframe Chapter Methods

21.3 Summary

If you need to update a column or add a new column, use the .assign method. If the .assign
method is part of a chain, you may want to couple it with a function to have the current state of the
dataframe you are working with. I generally will make a function to clean up my data and then
put it right at the top of my notebook below where I load my data, so I can load the raw data and

then clean it up in two steps.

21.4 Exercises

With a dataset of your choice:

1. Create a "tweak” function to clean up the data.

2. Explore the memory usage of the raw data and the tweaked data.

186

Chapter 22
Dealing with Missing and Duplicated Data

We have seen how to find missing and duplicated data with a series, and let’s apply it to a
dataframe. If you are doing analysis or creating machine learning models on your data, you will
want to make sure that your data is complete before you start to report on it. Also, many machine
learning models will fail to train if you try to train them on dataframes with missing values.

We are going to jump back to the Presidential data for this chapter.

22.1 Missing Data

Determining where data is missing involves the same methods we saw on a series. We just need
to remember that a dataframe has an extra dimension. The dataframe has an .isna method that
returns a dataframe with true and false values indicating whether values are missing;:

>>> pres.isna()

President Party ... Average_rank Quartile
Seq.
1 False False ... False False
2 False False ... False False
3 False False ... False False
4 False False ... False False
5 False False ... False False
41 False False ... False False
42 False False ... False False
43 False False ... False False
44 False False ... False False
45 False False ... False False

[44 rows x 25 columns]

Because each of these columns is a boolean array, you can use them to select rows where values
are missing.

Let’s look as rows where Integrity is missing:
>>> pres[pres.Integrity.isna()]

It looks like there are no missing values for this column.

We can sum the results to get the counts of columns with missing values:

>>> pres.isna().sum()

President 0
Party 0
Background 0

187

22. Dealing with Missing and Duplicated Data

Missing Data
auto
make year cylinders drive
0 Alfa Romeo 1985 4.00 | Rear-Wheel
1 Ferrari 1985 12.00| Rear-Wheel
2 Dodge 1985 4.00| Front-Whee
3 Dodge 1985 8.00| Rear-Wheel
4 Subary 1993 4001 4-Wheelor
41139 Subaru 1993 4.00| Front-Whee
41140 Subaru 1993 4.00| Front-Whee
41141 Subaru 1993 4.00| 4-Wheel or
41142 Subaru 1993 4.00| 4-Wheel or
41143 Subaru 1993 4.00| 4-Wheel or
auto.isna()
make year cylinders drive
0 False False False False
1 False False False False
2 False False False False
3 False False False False
41139 False False False False
41140 False False False False
41141 False False False False
41142 False False False False
41143 False False False False
auto.isna().any() (al::ga() Counts (ali’ga() Percent
.sum()) .mean()
.mu1(100))
make False make 0 make 0.00
year False year 0 year 0.00
cylinders True cylinders 206 cylinders 0.50
drive True drive 1189 drive 2.89

Figure 22.1: Using .isna to create a boolean array of missing values, counting them, or getting the percent
of them.

188

22.1. Missing Data

Missing Data for DataFrames

data
(data
day snow .assign(sn0w= day snow |s_missing
0 Mon 0.00 data,snow,where(0 Mon 0.00| False
1 Tue nan cond=~((data.day=="'Tue') & 1 Tue 10.00 | True
2 Wed 18.00 (data.snow.isna())), 2 Wed 18.00| False
3 Thu 12.00 other=10), 3 Thu 12.00| False
4 Fri nan s_missing=data.snow.isna() 4 Fri nan| True
5 Sat 7.00 5 Sat 7.00| False
6 Sun 8.00 6 Sun 8.00| False

Where keeps values if cond is true

Figure 22.2: A more complicated example of filling in missing values using .where.

Imagination 0
Integrity

Avoid_crucial_mistakes
Experts' view

Overall

Average_rank

Quartile

Length: 25, dtype: inté64

[« <> I «» B «» I «» BN

We can take the mean of them to get the fraction missing. In this case none of them are missing:

>>> pres.isna().mean()

President 6.0
Party 0.0
Background 0.0
Imagination 0.0
Integrity 0.0

Avoid_crucial_mistakes
Experts' view

Overall

Average_rank

Quartile

Length: 25, dtype: floaté64

[« I <> I «» B «» I «» B
OO0 oo

With these tools, you should be able to diagnose and locate missing data. Once you have found
out where the data is missing, you need to determine what actions to take. You can drop missing
values with .dropna. There is a .fillna and an .interpolate method on the dataframe. But often,
those are too rough of tools when dealing with multiple columns as the columns represent different
things. (I do find them useful after grouping the data). I generally do that at the series level and
then use .assign to update the column, filling in the missing values.

189

22. Dealing with Missing and Duplicated Data
22.2 Duplicates

Like the series .drop_duplicates method, the same method is available to the dataframe. When
called without any parameters, it is often too blunt of a tool to use on a dataframe. However, the
subset parameter allows you to specify which columns you want it to consider dropping:

>>> pres.drop_duplicates()

President Party ... Average_rank Quartile
Seq.
1 George Washington Independent ... 1 Tst
2 John Adams Federalist ... 13 2nd
3 Thomas Jefferson Democratic-Republican 5 Tst
4 James Madison Democratic-Republican 7 Tst
5 James Monroe Democratic-Republican 8 Tst
41 George H. W. Bush Republican ... 21 2nd
42 Bill Clinton Democratic ... 15 2nd
43 George W. Bush Republican ... 33 3rd
44 Barack Obama Democratic ... 17 2nd
45 Donald Trump Republican ... 42 4th

[44 rows x 25 columns]

Because none of the rows are complete copies, the above call does nothing. If we wanted to
keep only the first president from each party, we can do the following:

>>> pres.drop _duplicates(subset='Party')

President ... Quartile
Seq. e
1 George Washington ... 1st
2 John Adams ... 2nd
3 Thomas Jefferson ... 1st
7 Andrew Jackson ... 2nd
9 William Henry Harrison ... 4th
16 Abraham Lincoln ... 1st

[6 rows x 25 columns]

You can use the keep parameter to specify how to drop values. The default value, 'first', will
keep the first value. You can use 'last' or False to keep the last value or to drop all duplicates
respectively:

>>> pres.drop_duplicates(subset="'Party', keep='last')

President Party ... Average_rank Quartile
Seq. ee
2 John Adams Federalist ... 13 2nd
6 John Quincy Adams Democratic-Republican ... 18 2nd
10 John Tyler Independent ... 37 4th
13 Millard Fillmore Whig ... 39 4th
44 Barack Obama Democratic ... 17 2nd
45 Donald Trump Republican ... 42 4th

[6 rows x 25 columns]

>>> pres.drop_duplicates(subset="'Party', keep=False)
President Party ... Average_rank Quartile

Seq. e

2 John Adams Federalist ... 13 2nd

190

22.3. Summary

[1 rows x 25 columns]

To drop duplicates if only the previous row is a duplicate (rather than any row), we need a little
more logic. We do this by creating a column that indicates whether it is not the same as the next
value. This indicates whether it is the first entry in a sequence. Then we can combine this with a
lambda function and .1loc:

>>> (pres
.assign(first_in_party seq=lambda df : df_.Party != df .Party.shift(1),
)
. .loc[lambda df_:df_.first_in_party seq]
)
President ... first_in_party_seq

Seq.
1 George Washington ... True
2 John Adams ... True
3 Thomas Jefferson ... True
7 Andrew Jackson ... True
9 William Henry Harrison ... True
40 Ronald Reagan ... True
42 Bill Clinton ... True
43 George W. Bush ... True
44 Barack Obama ... True
45 Donald Trump ... True

[26 rows x 26 columns]

Method Description
.isna() Return boolean dataframe with same dimensions
with True values where cells are missing.

.sum(axis=0, skipna=True, level=None, Return sum over axis. Default of empty sequence is
numeric_only=None, min_count=0 0, set min_count=1t

.mean(axis=0, skipna=True, level=None, Return mean over axis.
numeric_only=None, min_count=0

.drop_duplicates(subset=None, Return dataframe that has duplicated rows removed.
keep='first', ignore_index=False) Indicate certain columns to consider with subset.

keep can be 'first', 'last’, or False (drop all
dupes). Set ignore_index=True to reset index.
Table 22.1: Dataframe Chapter Methods

22.3 Summary

In this chapter, we saw how you could diagnose how much data is missing in a dataframe. In a
later chapter, we will see how to fill in missing data on JetBrains survey data. In the time series
chapter, we will look at methods for dealing with missing data in sequential data sets.

22.4 Exercises
With a dataset of your choice:

1. Find out which columns have missing data.

191

22. Dealing with Missing and Duplicated Data

2. Count the number of missing values for each column.
3. Find the percentage of missing values for each column.
4. Find the rows with missing data.

5. Find the rows that are duplicated.

192

Chapter 23

Sorting Columns and Indexes

In this chapter, we will explore sorting columns and index values.

23.1 Sorting Columns

The .sort_values method will you sort the rows of a dataframe by arbitrary columns. In this
example, we sort by the political party in alphabetic order:

>>> pres.sort_values(by='Party')

President ... Quartile
Seq. e
22/24 Grover Cleveland ... 3rd
32 Franklin D. Roosevelt ... 1st
17 Andrew Johnson ... 4th
33 Harry S. Truman ... 1st
15 James Buchanan ... 4th
18 Ulysses S. Grant ... 3rd
45 Donald Trump ... 4th
13 Millard Fillmore ... 4th
12 Zachary Taylor ... 3rd
9 William Henry Harrison ... 4th

[44 rows x 25 columns]

You can also sort by multiple columns, as well as specifying whether each column should
be sorted in ascending (the default) or descending order. Here we sort by the Party column in
ascending alphabetic order and Average_rank in descending order:
>>> (pres

.sort_values(by=["'Party', 'Average rank'],
ascending=[True, False])

)

President Party ... Average_rank Quartile
Seq. ...
17 Andrew Johnson Democratic ... 44 4th
15 James Buchanan Democratic ... 43 4th
14 Franklin Pierce Democratic ... 41 4th
39 Jimmy Carter Democratic ... 27 3rd
8 Martin Van Buren Democratic ... 25 3rd
26 Theodore Roosevelt Republican ... 4 1st
16 Abraham Lincoln Republican ... 3 1st

193

23. Sorting Columns and Indexes

13 Millard Fillmore Whig ... 39
9 William Henry Harrison Whig ... 38
12 Zachary Taylor Whig ... 30

[44 rows x 25 columns]

4th
4th
3rd

Like the built-in sorted function, you can supply a key function to the .sort_values method to
determine how to sort the by column. Let’s sort the rows by the last name of the president. We will

use .str.split to separate the parts of the name:

>>> (pres
.President
.str.split()
e)
Seq.
1 [George, Washington]
2 [John, Adams]
3 [Thomas, Jefferson]
4 [James, Madison]
5 [James, Monroe]

41 [George, H., W., Bush]

42 [Bill, Clinton]
43 [George, W., Bush]
44 [Barack, Obama]
45 [Donald, Trump]

Name: President, Length: 44, dtype: object

This is a case where .apply might be appropriate (another hint is that we are manipulating
strings which are not vectorized operations.) Each value is a Python list and we need the last

value:

>>> (pres
.President
.str.split()
.apply(lambda val: val[-1])

e)

Seq.

1 Washington

2 Adams

3 Jefferson

4 Madison

5 Monroe

41 Bush

42 Clinton

43 Bush

44 Obama

45 Trump

Name: President, Length: 44, dtype: object

Awesome, we just need to put this logic into the key function:

>>> (pres
.sort_values(by="'President’,
key=lambda name_ser: name_ser
.str.split()
.apply(lambda val:val[-1]))

194

23.2. Sorting Column Order

Party ... Quartile
President
Abraham Lincoln Republican ... Tst
Andrew Jackson Democratic ... 2nd
Andrew Johnson Democratic ... 4th
Barack Obama Democratic ... 2nd
Benjamin Harrison Republican ... 4th
William Henry Harrison Whig ... 4th
William Howard Taft Republican ... 2nd
William McKinley Republican ... 2nd
Woodrow Wilson Democratic ... 2nd
Zachary Taylor Whig ... 3rd

[44 rows x 24 columns]

23.2 Sorting Column Order

If you want to sort the columns, you can use the .sort_index method and set the axis value
appropriately:

>>> pres.sort_index(axis='columns')

Ability_to_compromise ... Willing to_take_risks
Seq. ..
1 e 6
2 K 14
3 5
4 . 15
5 7 ... 16
41 13 ... 27
42 3 ... 17
43 28 ... 20
44 16 ... 23
45 42 ... 25

[44 rows x 25 columns]

I don’t find myself using this very often unless I have an index with string values (as we will
see later).

23.3 Setting and Sorting the Index

You can stick a column into the index with .set_index. You may want to follow that up with sorting
the index:
>>> (pres

.set_index('President')
.sort_index()

)
Party Background ... Average_rank Quartile
President e
Abraham Lincoln Republican 28 ... 3 Tst
Andrew Jackson Democratic 37 ... 19 2nd
Andrew Johnson Democratic 42 ... 44 4th
Barack Obama Democratic 24 ... 17 2nd

195

23. Sorting Columns and Indexes

Benjamin Harrison Republican 33 ... 36 4th
William Henry Harrison Whig 22 ... 38 4th
William Howard Taft Republican 12 ... 22 2nd
William McKinley Republican 29 ... 20 2nd
Woodrow Wilson Democratic 8 ... 12 2nd
Zachary Taylor Whig 30 ... 30 3rd

[44 rows x 24 columns]

If you sort an index that has string index values that are duplicated, then you can slice on the
index. If you did not sort the index, you will get a KeyError:

>>> (pres
.set_index('Party"')
.loc['Democratic':'Republican']

)

Traceback (most recent call last):

KeyError: "Cannot get left slice bound for non-unique label: 'Democratic'"

Sorting the index allows us to slice the index by name:

>>> (pres
.set_index('Party"')
.sort_index()
.loc['Democratic':'Republican']

)
President Background Average_rank Quartile

Party e
Democratic Grover Cleveland 26 ... 23 3rd
Democratic Franklin D. Roosevelt 6 ... 2 Tst
Democratic Andrew Johnson 42 ... 44 4th
Democratic Harry S. Truman 31 ... 9 1st
Democratic James Buchanan 36 ... 43 4th
Republican Theodore Roosevelt 5 ... 4 1st
Republican William McKinley 29 ... 20 2nd
Republican Benjamin Harrison 33 ... 36 4th
Republican Ulysses S. Grant 20 24 3rd
Republican Donald Trump 43 42 4th
[41 rows x 24 columns]

Method Description

.sort_values(by, axis=0, ascending=True,
kind="'quicksort', na_position='last',
ignore_index=False, key=None))

Return dataframe with values sorted along the axis.
Use by to specify column (string) or a list of
columns (for axis=0). Can use kind="'mergesort' or
kind="'stable' for a stable sort if only sorting one
column. A key function accepts a series and should
return a series with the same index.

196

23.4. Summary

.sort_index(axis=0, level=None, Return dataframe with index (axis=0) or columns
ascending=True, kind='quicksort', (axis=1) sorted. Can specify a single level or
na_position='last’, multiple levels with levels. Can specify the
sort_remaining=True, direction of each level sort with ascending. along
ignore_index=False, key=None)) the axis (default is 0). Use by to specify column

(string) or a list of columns (for axis=8). Can use
kind="mergesort' or kind="'stable' for a stable sort if
only sorting one column. Can reset the index with
ignore_index. A key function accepts an index and
should return an index. For multi-level indexes,
each index is passed in independently to the
function.

.set_index(keys, drop=True, append=False, Return dataframe with the new index. The keys

verify _integrity=False) argument can be a column name, a series (or
numpy array) of labels for the index, or a list of
column names or series. The drop parameter
indicates whether to remove columns used for the
index. The append parameter allows you to add
additional index levels. You can check for
duplicate index values by setting
verify integrity=True.

.loc Attribute to index off of by index and column names.

Slices use the closed interval (include start and
end).

234

Table 23.1: Dataframe Sorting and Indexing Methods

Summary

In this chapter, we showed how to sort both the index and the columns. If you want to sort based
on arbitrary values, you can use the key parameter to determine how sorting occurs. You can also
sort by various columns as well as control the direction of the sort. Sorting the index is particularly
useful if it contains strings because you can slice on the string values (or substrings) after the index
is sorted.

235

Exercises

With a dataset of your choice:

1.

AN L T i

Sort the index.

Set the index to a string column, sort the index, and slice by a substring of index values.
Sort by a single column.

Sort by a single column in descending order.

Sort by two columns.

Sort by the last letter of a string column.

197

Chapter 24

Filtering and Indexing Operations

I like to keep my data in the columns, not in the index. Occasionally you will need to manipulate
the index. This chapter will explore some of the operations to change the index and operations
that result from that. Then we will look at pulling data out based on index names and locations (as
well as column names and positions).

24.1 Renaming an Index

In this example, we will use the .rename method to update the index values. This method will
accept a function that takes the current value and will return a new value. Here we will use the
first initial of the president:

>>> def name_to_initial(val):

names = val.split()
return ' '.join([f'{names[0][0]}."', *names[1:]])

>>> (pres
.set_index('President')
.rename (name_to_initial)

.

Party ... Quartile
President .
G. Washington Independent ... 1st
J. Adams Federalist ... 2nd
T. Jefferson Democratic-Republican ... Tst
J. Madison Democratic-Republican ... Tst
J. Monroe Democratic-Republican ... Tst
G. H. W. Bush Republican ... 2nd
B. Clinton Democratic ... 2nd
G. W. Bush Republican ... 3rd
B. Obama Democratic ... 2nd
D. Trump Republican ... 4th

[44 rows x 24 columns]

24.2 Resetting the Index

If you want a monotonically increasing integer index for a dataframe, use the .reset_index method:

199

24. Filtering and Indexing Operations

>>> (pres
.set_index('President')
.reset_index()

)

President Party ... Average_rank Quartile
0 George Washington Independent ... 1 1st
1 John Adams Federalist ... 13 2nd
2 Thomas Jefferson Democratic-Republican ... 5 1st
3 James Madison Democratic-Republican ... 7 1st
4 James Monroe Democratic-Republican ... 8 1st
39 George H. W. Bush Republican ... 21 2nd
40 Bill Clinton Democratic ... 15 2nd
41 George W. Bush Republican ... 33 3rd
42 Barack Obama Democratic ... 17 2nd
43 Donald Trump Republican ... 42 4th

[44 rows x 25 columns]

24.3 Dataframe Indexing, Filtering, & Querying

We have already looked at how to use boolean arrays to index a series and limit what it returns. We
can also do this with dataframes. Let’s look at the presidents with an Average_rank below 10. First,
we will make a boolean array where the column Average_rank is below 10. Then we will index into
the dataframe with this boolean array:

>>> 1t10 = pres.Average_rank < 10
>>> pres[1t10]

President ... Quartile
Seq. e
1 George Washington ... Tst
3 Thomas Jefferson ... Tst
4 James Madison ... Tst
5 James Monroe ... Tst
16 Abraham Lincoln ... Tst
26 Theodore Roosevelt ... Tst
32 Franklin D. Roosevelt ... Tst
33 Harry S. Truman ... Tst
34 Dwight D. Eisenhower ... Tst

[9 rows x 25 columns]

Let’s add in another option, if they are a Republican:

>>> pres[1t10 & (pres.Party == 'Republican')]

President Party ... Average_rank Quartile
Seq. e
16 Abraham Lincoln Republican ... 3 1st
26 Theodore Roosevelt Republican ... 4 Tst
34 Dwight D. Eisenhower Republican ... 6 1st

[3 rows x 25 columns]

200

24.3. Dataframe Indexing, Filtering, & Querying

Note
Be careful when combining conditions in indexing operations. If we inline the above operation,
we get a different result:

>>> pres[pres.Average rank < 10 & pres.Party == 'Republican']
Traceback (most recent call last):

TypeError: unsupported operand type(s) for &: 'int' and 'Categorical'

This is because the & operator has higher precedence than >=. So in effect the above is doing
pres.Average rank < (10 & pres.Party == 'Republican'). Let’s look at what that does:

>>> 10 & pres.Party == 'Republican'
Traceback (most recent call last):

TypeError: unsupported operand type(s) for &: 'int' and 'Categorical'

Sometimes you will get back an answer here (if you are not comparing to a categorical), but
you might not get the answer you wanted due to precedence.

The takeaway here is that you should always put parentheses around multiple conditions
in index operations if you inline them:

>>> pres[(pres.Average rank < 10) & (pres.Party == 'Republican')]
President Party ... Average_rank Quartile

Seq. ..

16 Abraham Lincoln Republican ... 3 Tst

26 Theodore Roosevelt Republican ... 4 Tst

34 Dwight D. Eisenhower Republican ... 6 Tst

[3 rows x 25 columns]

One method thatis unique to the dataframe (not found on a series) is the . query method. Instead
of creating boolean arrays, we create a string, similar to SQL, with the conditions we want:

>>> pres.query('Average_rank < 18 and Party == "Republican"')
President Party ... Average_rank Quartile

Seq. e

16 Abraham Lincoln Republican ... 3 1st

26 Theodore Roosevelt Republican ... 4 1st

34 Dwight D. Eisenhower Republican ... 6 1st

[3 rows x 25 columns]

In the case of .query, we can use and or &, in contrast to when we want to combine boolean arrays
we need to use & (likewise we can use or and not in .query). We also do not need to worry as much
about precedence and parentheses.

If you have an existing variable and want to refer to it inside of the string, you can prefix the
variable with a @:

>>> 1t10 = pres.Average_rank < 10

>>> pres.query('@1t10 and Party == "Republican"')

President Party ... Average_rank Quartile
Seq. e
16 Abraham Lincoln Republican ... 3 1st
26 Theodore Roosevelt Republican ... 4 1st
34 Dwight D. Eisenhower Republican ... 6 1st

[3 rows x 25 columns]

201

24. Filtering and Indexing Operations

The .query Method

mpg
make year city08 highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
4 Subary 1003 17 23
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21

makes = ['Ford', 'Toyota']

(mpg
.query("make.isin(@makes) and city08 > 50"))

Use @ for variables

make year city08 highway08
7139 Toyota 2000 81 64
8143 Toyota 2001 81 64
8144 Ford 2001 74 58
9212 Toyota 2002 87 69
10329 Tovota 2003 87 69
34286 Toyota 2019 52 48
34287 Toyota 2019 58 53
34307 Toyota 2019 55 53
34341 Toyota 2020 53 52
34644 Toyota 2020 55 53

Does not exist for Series!

Figure 24.1: The .query method allows you to call methods, include variables, and combine conditional
expressions inside a string.

24.4 Indexing by Position

The .iloc attribute gives us the ability to pull out rows and columns from a dataframe. Here we
pull out row position 1. Note that this returns the result as a series (even though it represents a
TOW):

>>> pres.iloc[1]

President John Adams
Party Federalist
Background 3
Imagination 13
Integrity 4
Avoid_crucial_mistakes 16
Experts' _view 10
Overall 14
Average_rank 13
Quartile 2nd

Name: 2, Length: 25, dtype: object

202

24.4. Indexing by Position

The .iloc Attribute for Dataframes

mpg
make | vear | highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
4 Sybary 1003 17 23
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21

(mpg.iloc[[0,10,100], [2, 0]D)

0 19| Alfa Romeo
10 23 Toyota
100 10| Rolls-Royce

Figure 24.2: Using .1iloc to select rows and columns by position. Note that Python is 0-based indexing, so 0
is the first entry, 1 is the second, etc.

In the next example, instead of passing in scalar position, we are going to pass in row position
1 in a list. Sometimes you will hear people say to use a “nested list”. To be pedantic, this is not
a nested list. It is an indexing operation (the outer brackets) with a list (the inner brackets). This
does not return a series but a dataframe with a single row:

>>> pres.iloc[[1]]
President

Seq.

2 John Adams

[1 rows x 25 columns]

We can also pass in slices and lists:
>>> pres.iloc[[0, 5, 10]]

President
Seq.
1 George Washington
6 John Quincy Adams
11 James K. Polk

[3 rows x 25 columns]

>>> pres.iloc[0:11:5]

President
Seq.
1 George Washington
6 John Quincy Adams

Party

Federalist

Quartile
Tst

2nd
Tst

Quartile

Tst
2nd

Average_rank

13

Quartile

2nd

203

24. Filtering and Indexing Operations

11 James K. Polk ... 1st

[3 rows x 25 columns]

Finally, you can pass a function into the index operation. The function takes a dataframe and
should return valid options for .iloc. The two following operations should give the same results:

>>> pres.iloc[[0, 5, 10]]

President ... Quartile
Seq. e
1 George Washington ... 1st
6 John Quincy Adams ... 2nd
11 James K. Polk ... 1st

[3 rows x 25 columns]

>>> pres.iloc[lambda df: [0,5,10]]

President ... Quartile
Seq. ..
1 George Washington ... 1st
6 John Quincy Adams ... 2nd
1 James K. Polk ... 1st

[3 rows x 25 columns]

So far, this looks very similar to indexing on a series. But remember, a data frame is two-
dimensional. We have been passing in a row indexer, but we can also pass in a column indexer.
You put the column indexer after the row indexer following a comma.

Here we will just pull out the second column (index position 1). Because we are using a scalar
for the column indexer, it will return a series:

>>> pres.iloc[[0, 5, 18], 1]

Seq.

1 Independent

6 Democratic-Republican

11 Democratic

Name: Party, dtype: category

Categories (6, object): ['Democratic', 'Democratic-Republican',

'Republican', 'Whig']
If we want to get a dataframe as a result (even if it only has one column), we need to pass in a
list for the column indexer:
>>> pres.iloc[[0, 5, 18], [1]]

Party
Seq.
1 Independent
6 Democratic-Republican
11 Democratic

We can also pass in a list of columns or a slice to the column indexer. If we want to include all
rows, but just filter columns, passin : as the row indexer to select all rows:

>>> pres.iloc[:, [1, 2]]
Party Background

Seq.

1 Independent 7
2 Federalist 3
3 Democratic-Republican 2
4 Democratic-Republican 4

204

24.5. Indexing by Name

5 Democratic-Republican
41 Republican
42 Democratic
43 Republican
44 Democratic
45 Republican

[44 rows x 2 columns]

>>> pres.iloc[:, 1:3]

Party
Seq.
1 Independent
2 Federalist
3 Democratic-Republican
4 Democratic-Republican
5 Democratic-Republican
41 Republican
42 Democratic
43 Republican
44 Democratic
45 Republican

[44 rows x 2 columns

24.5 Indexing by Name

10
21
17
24
43

Background

O BN W

21
17
24
43

Let’s explore indexing by the name of index entries on a dataframe. This is done by indexing on
.loc. If you are confused between .1loc and . iloc, just remember that . iloc indexes on position and
that computer programs generally use the variable i to represent an index position.

One thing to be aware of is the difference between .iloc and .loc when dealing with integer
indexes. In particular, slicing has different behavior. Slicing with .iloc follows the half-open
interval (includes the first index but not the last). Slicing with .1loc follows the closed interval
(includes both the start and end index). (I know we mentioned this in the series chapter, but it

bears repeating because it can be confusing).

I will try to slice off index names from 1 through 5 in the following example. Because I'm using
.loc, this will match the names. However, the index is not an integer index, so this fails (we set the
Seq column to the index, and it had the entry “22/24” causing pandas to leave it as string):

>>> pres.loc[1:5]

Traceback (most recent call last):

TypeError: cannot do slice indexing on Index with these

indexers [1] of type int

Let’s try it again with strings:

>>> pres.loc['1':'5"']

President
Seq.
1 George Washington
2 John Adams
3 Thomas Jefferson
4 James Madison

Quartile

Tst
2nd
Tst
1st

205

24. Filtering and Indexing Operations

The . loc Attribute for Dataframes

mpg
make year city08 highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
4 Subary 1003 17 23
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21

0,10, 100 are labels not positions

(mpg
.loc[[0,10,1600], ['year', 'make']])

year make
0 1985| Alfa Romeo
10 1993 Toyota
100 1993 | Rolls-Royce

Figure 24.3: Selecting rows and columns by name. You can pass in a list of index names and column names.
Note that 0, 10, and 100 are the names, not the positions of the rows.

5 James Monroe ... 1st

[6 rows x 25 columns]

Contrast this with position slicing. This will return the four rows starting at the second position
(by position and ignoring the names):

>>> pres.iloc[1:5]

President ... Quartile
Seq. e
2 John Adams ... 2nd
3 Thomas Jefferson ... 1st
4 James Madison ... 1st
5 James Monroe ... 1st

[4 rows x 25 columns]

Let’s shift gears for a little bit and look at a dataframe that has string entries in the columns.
I'm going to stick the political party into the index and then pull out all of the Whig entries:

>>> (pres

.set_index('Party')

.loc['Whig"']

)
President Background ... Average rank Quartile

Party -
Whig William Henry Harrison 22 ... 38 4th
Whig Zachary Taylor 30 ... 30 3rd

206

24.5. Indexing by Name

Whig Millard Fillmore 40 ... 39 4th

[3 rows x 24 columns]

Note that this returns a dataframe, even though we used a scalar value for the index name. In
fact, it returns the same result if we pass in a list:
>>> (pres
.set_index('Party"')
.loc[['Whig']]

)
President Background ... Average_rank Quartile
Party ce
Whig William Henry Harrison 22 ... 38 4th
Whig Zachary Taylor 30 ... 30 3rd
Whig Millard Fillmore 40 ... 39 4th

[3 rows x 24 columns]

This is because there are multiple entries for Whig. This is one of those areas to tread with
caution. For example, the Federalist party only has one entry. So if you index with that name, you
get back a series if you use a scalar, and a dataframe if you use a list:
>>> (pres

.set_index('Party"')
.loc['Federalist']

o)

President John Adams
Background 3
Imagination 13
Integrity 4
Intelligence 4
Avoid _crucial_mistakes 16
Experts' view 10
Overall 14
Average_rank 13
Quartile 2nd

Name: Federalist, Length: 24, dtype: object

>>> (pres
.set_index('Party"')
.loc[['Federalist']]

)
President Background ... Average_rank Quartile
Party e
Federalist John Adams 3 ... 13 2nd

[1 rows x 24 columns]

One more thing is slicing with string indexes. Two things to remember:

e Sort the index if you want to slice it.

* You can slice with partial values.

If you don’t sort the index before slicing it, you will get an error:

207

24. Filtering and Indexing Operations

>>> (pres

.set_index('Party")
.loc['Democratic':'Independent']

)

Traceback (most recent call last):

KeyError: "Cannot get left slice bound for non-unique label:

If you sort the index, you will get results:

>>> (pres

.set_index('Party')

.sort_index ()

.loc['Democratic':'Independent ']

)

Party

Democratic
Democratic
Democratic
Democratic
Democratic

Democratic-Republican
Democratic-Republican
Federalist
Independent
Independent

[22 rows x 24 columns]

President

Grover Cleveland
Franklin D. Roosevelt
Andrew Johnson

Harry S. Truman

James Buchanan

James Madison
Thomas Jefferson
John Adams

George Washington
John Tyler

Quartile

3rd
1st
4th
1st
4th
1st
1st
2nd

1st
4th

'Democratic'"

Note that you can also use partial strings on sorted indexes:

>>> (pres

.set_index('President')

.sort_index()

.loc['C':'Thomas Jefferson',

)

President

Calvin Coolidge
Chester A. Arthur
Donald Trump

Dwight D. Eisenhower
Franklin D. Roosevelt

Richard Nixon
Ronald Reagan
Rutherford B. Hayes
Theodore Roosevelt
Thomas Jefferson

[31 rows x 4 columns]

Party

Republican
Republican
Republican
Republican
Democratic

Republican
Republican
Republican
Republican
Democratic-Republican

'"Party':'Integrity']

Integrity

17
37
44

5
16
43
24
32

8
14

You cannot use partial strings on categorical indexes:

>>> (pres

.set_index('Party')

.sort_index ()
.loc['D':'J']

208

24.6. Filtering with Functions & . 1loc

)

Traceback (most recent call last):
KeyError: 'D'
If you convert the categorical index to a string index then you can use partial strings:

>>> (pres
.assign(Party=pres.Party.astype(str))
.set_index('Party"')
.sort_index()

.loc['D':'J"']

)
President ... Quartile

Party
Democratic Grover Cleveland ... 3rd
Democratic Franklin D. Roosevelt ... Tst
Democratic Andrew Johnson ... 4th
Democratic Harry S. Truman ... 1st
Democratic James Buchanan ... 4th
Democratic-Republican James Madison ... Tst
Democratic-Republican Thomas Jefferson ... Tst
Federalist John Adams ... 2nd
Independent George Washington ... 1st
Independent John Tyler ... 4th

[22 rows x 24 columns]

You can also slice columns (if you sort the columns):

>>> (pres
.set_index('President')
.sort_index()
.sort_index(axis='columns"')
.loc['C':'Thomas Jefferson', 'B':'D']

)

Background ... Court_appointments
President c.
Calvin Coolidge 32 ... 31
Chester A. Arthur 41 ... 33
Donald Trump 43 ... 40
Dwight D. Eisenhower m ... 5
Franklin D. Roosevelt 6 ... 2
Richard Nixon 16 ... 32
Ronald Reagan 27 ... 18
Rutherford B. Hayes 3B ... 27
Theodore Roosevelt 5 ... 9
Thomas Jefferson 2 ... 7

[31 rows x 3 columns]

24.6 Filtering with Functions & . loc

You should be aware that you can pass in a boolean array and a function into .loc. Here, I select
rows with Average_rank less than ten and the first three columns:

209

24. Filtering and Indexing Operations

>>> (pres
.loc[pres.Average rank < 10, lambda df : df_.columns[:3]1]
)
President Party Background
Seq.
1 George Washington Independent 7
3 Thomas Jefferson Democratic-Republican 2
4 James Madison Democratic-Republican 4
5 James Monroe Democratic-Republican 9
16 Abraham Lincoln Republican 28
26 Theodore Roosevelt Republican 5
32 Franklin D. Roosevelt Democratic 6
33 Harry S. Truman Democratic 31
34 Dwight D. Eisenhower Republican 11

An advantage of passing a function into .1loc is that the function will receive the current state
of the dataframe. If you have .1loc in a chain of operations, the column names or rows might have
changed, so if you filter based on the original dataframe that began the chain, you might not be
able to get the data you need.

247 .queryvs .loc

There is often more than one way to do things in pandas. You may be wondering if you should
use .query or .loc.

If you do a lot of chaining (which I recommend), .query has the advantage of working on the
intermediate dataframe. One could argue that .1loc does as well, but often when using boolean
arrays with . loc, users insert a boolean array based on the original data, not the intermediate data.
You need to use a function with . loc to get access to the original dataframe.

On the flipside, .query does not support column selection, but .loc does. I don’t think this is a
situation where you should only learn one of these constructs and neglect the other. Learn them
both and figure out which one is appropriate given your requirements.

Method Description
.rename (mapper=None, index=None, Change axis labels. Pass the columns or index as a
columns=None, axis=8, copy=True, dictionary (mapping old values to new values) or a
level=None, errors='ignore') function (accepting the old value and returning the
new value).
.reset_index(level=None, drop=False, Return a dataframe with the new index (or new
col_level=0, col fill='") level). To remove a level, specify that with level

(by position or name). Position 0 is the outermost
level, and it goes up. Alternatively, -1 is the
innermost level. Index values are moved to
columns or dropped if drop=True. col_level
determines where the index label goes with
multiple column levels, other levels will get the
value of col_fill.

210

24.8. Summary

.set_index(keys, drop=True, append=False,
verify integrity=False)

.sort_index(axis=0, level=None,
ascending=True, kind='quicksort',
na_position='last',
sort_remaining=True,
ignore_index=False, key=None))

.query(expr)

.iloc

.loc

Return a dataframe with a new index. The keys

argument can be a column name, a series (or
numpy array) of labels for the index, or a list of
column names or series. The drop parameter
indicates whether to remove columns used for the
index. The append parameter allows you to add
additional index levels. You can check for
duplicate index values by setting
verify_integrity=True.

Return a dataframe with the index (axis=0) or

columns (axis=1) sorted. Can specify a single level
or multiple levels with levels. Can specify the
direction of each level sort with ascending. Choose
the axis (default is axis 0). Use by to specify a
column (string) or a list of columns (for axis=0).
Can use kind="mergesort' or kind="'stable' for a
stable sort if only sorting one column. Can reset
the index with ignore_index. A key function accepts
an index and should return an index, for
multi-level indexes each index is passed in
independently to the function.

Evaluate expr to filter the dataframe. Refer to

variables by prefixing them with @ Use backticks
around the column names with spaces.

Attribute to index off of by index and column

positions. Slices use the half-open interval (include
start but not end).

Attribute to index off of by index and column names.

Slices use the closed interval (include start and
end).

Table 24.1: Dataframe Filtering and Indexing Methods

24.8 Summary

In this chapter, we explored renaming the index. Then we saw how you can pull out rows and

columns based on names or positions.

24.9 Exercises
With a dataset of your choice:

1. Pull out the first two rows by name.
2. Pull out the first two rows by position.

3. Pull out the last two columns by name.

4. Pull out the last two columns by position.

211

Chapter 25

Plotting with Dataframes

One feature I like about pandas is the integration with Matplotlib. This integration makes it easy to
create various plots if you understand what type of plot you want. In this chapter, we will explore
the built-in plotting capabilities of pandas.

25.1 Lines Plots

The dataframe has a .plot attribute that you can use to plot. Line plots are easy to create. Remember
that pandas will plot the index in the x-axis, and each column will be its own line. Here is a default
plot. It is a little hard to process, but along the x-axis is the president (from the first to the last).
Each line represents what happens to the score from president to president:

>>> pres.plot().legend(bbox_to_anchor=(1,1))

Let’s make another line plot that is more involved. Each line will track the scores for a single
president. If we want each line to be a president then each column needs to represent president’s
data.

I'll show you how I will build this up. Let’s chain up the operations. We will need to put the
president’s name in the index:

>>> (pres

. .set_index('President')

)

Party ... Quartile

President R
George Washington Independent ... 1st
John Adams Federalist ... 2nd
Thomas Jefferson Democratic-Republican ... 1st
James Madison Democratic-Republican ... 1st
James Monroe Democratic-Republican ... 1st
George H. W. Bush Republican ... 2nd
Bill Clinton Democratic ... 2nd
George W. Bush Republican ... 3rd
Barack Obama Democratic ... 2nd
Donald Trump Republican ... 4th

[44 rows x 24 columns]

Next, we will filter out the columns we want (we will also remove every other president to give
the plot some breathing room):

213

25. Plotting with Dataframes

40

30

20

10

40

Background

Imagination

Integrity

Intelligence

Luck
Willing_to_take_risks
Ability_to_compromise
Executive_ability
Leadership_ability
Communication_ability
Overall_ability
Party_leadership
Relations_with_Congress
Court_appointments
Handling_of_economy
Executive_appointments
Domestic_accomplishments
Foreign_policy_accomplishments
Avoid_crucial_mistakes
Experts'_view

Overall

Average_rank

Figure 25.1: A line for each category, showing how it changed from president to president.

>>> (pres
.set_index('President')
.loc[::2, 'Background':"'0Overall']

)

Background ... Overall
President
George Washington 7 1
Thomas Jefferson 2 5
James Monroe 9 8
Andrew Jackson 37 19
William Henry Harrison 22 39
Lyndon B. Johnson 15 ... 16
Gerald Ford 18 ... 27
Ronald Reagan 27 ... 13
Bill Clinton 21 ... 15
Barack Obama 24 ... 17

[22 rows x 21 columns]

Next, let’s transpose the result with .T:

>>> (pres
.set_index('President')
.loc[::2, 'Background':"'0Overall']
—
.)

214

25.1. Lines Plots

The .plot Method

mpg
make year city08 highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
4 Sybaru 1003 17 23
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21
(mpg Plots each column against the index!
.groupby('year')
.mean()
.plot())
30 :
— city08
2g ~— highway08
26
24
22
20
18
16

1985

1990 1995

2000 2005

year

2010

2015

2020

Figure 25.2: You can also call the .plot attribute. By default, it will create a line plot, plotting each numeric
column against the index. The kind attribute specifies the type of plot. Rather than using kind, I recommend
using the specific plot type attribute.

215

25. Plotting with Dataframes

President
40 George Washington
Thomas Jefferson
James Monroe
30 Andrew Jackson
William Henry Harrison
20 James K. Polk
Millard Fillmore
James Buchanan
10 Andrew Johnson
Rutherford B. Hayes
Chester A. Arthur
0 Benjamin Harrison
Background Willing_to_take_risks Overall_ability Executive_¢ T heodore Roosevelt
—— Woodrow Wilson
—— Calvin Coolidge
—— Franklin D. Roosevelt
—— Dwight D. Eisenhower
—— Lyndon B. Johnson
—— Gerald Ford
Ronald Reagan
Bill Clinton
Barack Obama
Figure 25.3: A basic line plot for each president.
President George Washington ... Barack Obama
Background 7 ... 24
Imagination 7 ... 11
Integrity 1T ... 13
Intelligence 10 ... 9
Luck 1T ... 15
Domestic_accomplishments 2 13
Foreign_policy_accomplishments 2 20
Avoid_crucial_mistakes 1 10
Experts' view 2 11
Overall 1 17

[21 rows x 22 columns]

This data looks good. Each column will be its own line. Let’s plot it:

>>> (pres
.set_index('President')
.loc[::2, 'Background ':'0Overall']
T
.plot ()
)

This is a good start, but we can make it better. Let’s clean the plot up. Because pandas leverages
Matplotlib, I will use some of that library:

216

25.1. Lines Plots

>>>
>>>
>>>

>>>
>>>

>>>

the

>>>
>>>
>>>

Figure 25.4: A cleaned-up line plot for each president.

Label every attribute

Rotate the attribute labels

Move the legend

Add alabel to the y-axis

import matplotlib.pyplot as plt
fig, ax = plt.subplots(dpi=600, figsize=(10,4))
(pres

.set_index('President')

.loc[::2, 'Background':'0Overall']

LT

.plot(ax=ax, rot=45).1legend(bbox_to_anchor=(1,1))
)
ax.set_xticks(range(21))
ax.set xticklabels(pres

.loc[:, 'Background':'Overall'].columns, ha='right')

ax.set_ylabel('Rank')

George Washington
Thomas Jefferson
James Monroe
Andrew Jackson
William Henry Harrison
James K. Polk
Millard Fillmore
James Buchanan
Andrew Johnson
Rutherford B. Hayes
Chester A. Arthur
Benjamin Harrison
Theodore Roosevelt
Woodrow Wilson
Calvin Coolidge
Franklin D. Roosevelt
Dwight D. Eisenhower
Lyndon B. Johnson
Gerald Ford

Ronald Reagan

Bill Clinton

Barack Obama

This is still a little hard to read. Generally, we want to pull attention to a single line. Let’s
highlight Washington. A trick that visualization experts use is to mute the other colors. I will use

.pipe method to create a colors list to indicate the colors for each line:

fig, ax = plt.subplots(dpi=600, figsize=(10,4))
colors = []
def set colors(df):
for col in df.columns:
if 'George' in col:
colors.append('#990000"')
else:
colors.append('#999999"')

217

25. Plotting with Dataframes

—— George Washington
——— Thomas Jefferson
—— James Monroe
——— Andrew Jackson
——— William Henry Harrison
—— James K. Polk
~——— Millard Fillmore
—— James Buchanan
"A\\A ——— Andrew Johnson
‘\%}1{ £ —— Rutherford B. Hayes
v <D ——— Chester A. Arthur
A“'-?‘ - ——— Benjamin Harrison
——— Theodore Roosevelt
~——— Woodrow Wilson
~—— Calvin Coolidge
—— Franklin D. Roosevelt
~——— Dwight D. Eisenhower
—— Lyndon B. Johnson
~——— Gerald Ford
~——— Ronald Reagan
—— Bill Clinton
—— Barack Obama

“I::::ﬁ.-...ﬁ"

Figure 25.5: A cleaned-up line plot for each president highlighting George Washington.

return df

>>> (pres
.set_index('President')
.loc[::2, 'Background':"'0Overall']
T
.pipe(set_colors)
.plot(ax=ax, rot=45, color=colors)
.legend (bbox_to_anchor=(1,1))

>>> ax.set_xticks(range(21))

>>> ax.set xticklabels(pres

- .loc[:, 'Background':'Overall'].columns, ha='right")
>>> ax.set_ylabel('Rank')

25.2 Bar Plots

Let’s make a bar plot comparing 4 attributes for each president. Again remember that pandas will
plot the index on the x-axis. Here’s the data:
>>> (pres

.set_index('President')
.iloc[:, -5:-1]

)

Avoid_crucial_mistakes ... Average_rank
President
George Washington T ... 1
John Adams 16 ... 13
Thomas Jefferson 5
James Madison 11 7
James Monroe 8

218

25.3. Scatter Plots

George H. W. Bush 17 ... 21
Bill Clinton 30 ... 15
George W. Bush 36 ... 33
Barack Obama 0 ... 17
Donald Trump 41 ... 42

[44 rows x 4 columns]

Here’s the plot. Each value will be its own bar above the president label:
>>> fig, ax = plt.subplots(dpi=600, figsize=(10,4))
>>> (pres
.set_index('President')
.iloc[:, -5:-1]
.plot.bar(rot=45, figsize=(12,4), ax=ax)

cee)
>>> ax.set xticklabels(labels=ax.get xticklabels(), ha='right")

>>> ax.legend(bbox_to_anchor=(1,1))

Often it is easier to read a horizontal bar plot. We don’t need to turn our head sideways to read
the labels. By changing .bar to .barh we create a horizontal bar plot:

>>> (pres
.set_index('President')
.iloc[:, -5:]

.plot.barh(figsize=(4,12))
.legend (bbox_to_anchor=(1,1))
2)

25.3 Scatter Plots

A scatter plot is useful to determine the relationship between two columns that are numeric. We
can evaluate what tends to happen to one value as the other value changes. Here is a scatter plot
to example the relationship between Integrity and Avoid crucial mistakes:
>>> (pres
.. .plot.scatter(x="Integrity', y='Avoid crucial _mistakes"')

)

It appears that as the rank for integrity falls, so does the rank for avoiding crucial mistakes.

Indeed, the Pearson correlation coefficient also seems to indicate this:

>>> pres.Integrity.corr(pres.Avoid crucial mistakes)
0.7455954897815362

I like to add other dimensions and color by them. Let’s color this by Luck using the ¢ parameter
to specify the column to color by:
>>> (pres
.plot.scatter(x="Integrity', y='Avoid crucial _mistakes',
.. c='Luck', cmap='viridis')
)
Another mechanism to visualize relationships between two continuous values as well as
density (where the values overlap), is a hexbin plot. You should choose an appropriate colormap
that is continuous and increasing from white to dark for this plot:
>>> (pres
.plot.hexbin(x="Integrity', y="Avoid crucial mistakes',
cmap="'Greens ')

219

25. Plotting with Dataframes

Donald Trump
Barack Obama
George W. Bush

Bill Clinton

George H. W. Bush
Ronald Reagan
Jimmy Carter
Gerald Ford

Richard Nixon
Lyndon B. Johnson
John F. Kennedy
Dwight D. Eisenhower
Harry S. Truman
Franklin D. Roosevelt
Herbert Hoover
Calvin Coolidge
Warren G. Harding
Woodrow Wilson
William Howard Taft
Theodore Roosevelt
William McKinley
Benjamin Harrison
Grover Cleveland
Chester A. Arthur
James A. Garfield
Rutherford B. Hayes
Ulysses S. Grant
Andrew Johnson
Abraham Lincoln
James Buchanan
Franklin Pierce
Millard Fillmore
Zachary Taylor
James K. Polk

John Tyler

William Henry Harrison
Martin Van Buren
Andrew Jackson
John Quincy Adams
James Monroe
James Madison
Thomas Jefferson
John Adams
George Washington

President

220

10

20

30

40

mmm Avoid_crucial_mistakes
EEm Experts'_view
mmm Overall

mmm Average_rank

Figure 25.6: Horizontal bar plot for 4 attributes.

25.3. Scatter Plots

The .plot.barh Method

mpg
make year city08 highway08
0 Alfa Romeo 1985 19 25
1 Ferrari 1985 9 14
2 Dodge 1985 23 33
3 Dodge 1985 10 12
4 Sybary 1003 17 23
41139 Subaru 1993 19 26
41140 Subaru 1993 20 28
41141 Subaru 1993 18 24
41142 Subaru 1993 18 24
41143 Subaru 1993 16 21

Plots each column as a bar!
def topn(ser, n=b):
vals = ser.value counts().index[:n]
return ser.where(ser.isin(vals), 'Other')

(mpg
.make
.pipe(topn)
.value_counts()
.plot.barh())

Mitsubishi
Volkswagen
Nissan
Mercedes-Benz
BMW
Toyota

GMC

Dodge

Ford
Chevrolet
Other

o

2500 5000 7500 10000 12500 15000 17500 20000

Figure 25.7: The .plot.barh method will plot each column as a bar plot. Because it is a horizontal bar plot, it
will place the index in the y-axis.

221

25. Plotting with Dataframes

Avoid_crucial_mistakes
Experts'_view

Overall

Average_rank

'
o

w
o

N
o

‘ 1 m Im H
4 XA & S AL DS
D K EREL LT o e P O
‘i@"’vv N ARG o°‘\~2~° FRAOSES N

10 ‘
o M

&

RN
P

2
0,

President

Figure 25.8: Bar plot for 4 attributes.

40 . -

30 o .

Avoid_crucial_mistakes
[]
[]
[]

0 10 20 30 40
Integrity

Figure 25.9: Scatter plot for Integrity and Avoid crucial mistakes.

25.4 Area Plots and Stacked Bar Plots

A dataframe can create stacked area plots with the .area method. This plot is useful when you
want to understand each column’s relative contribution and the order of the data is important. If
there is not a relationship and order between the values, I prefer a stacked bar plot.
Below, I specify the numeric columns I want with the y parameter. After plotting, I adjust the
number of ticks and labels:
>>> (pres
.plot.area(x="'President',
y='Background Imagination Integrity Intelligence Luck '\
'"Willing_to_take risks Ability _to compromise'.split(),
rot=45)

222

25.4. Area Plots and Stacked Bar Plots

N
o

[]
[J

w
o
[]
[]
[
[
[
| I
N w
(¢1 o

N
o
[]

[]

[]

|
N
o

Avoid_crucial_mistakes
o
[]

—_
o
[]
[
[]

Integrity

Figure 25.10: Scatter plot for Integrity and Avoid crucial mistakes, colored by Luck.

‘ = 30
40 -25

%]
()
g .
w 30 -20
£ =
T -15
S 20
Bl
o -1.0
S
< 10
-0.5
0 . _0.0
0 10 20 30 40

Integrity

Figure 25.11: Hexbin plot for Integrity and Avoid crucial mistakes, showing where the density of values
occur.

223

25. Plotting with Dataframes

Il Background
250 B [magination
Bl ntegrity
I ntelligence
200
B Luck
B Willing_to_take_risks
150 I Ability_to_compromise
100
50
0

AR AR AN XA
S IRREAVARRS R g R OROHCLRED
S e e
o%é(‘}rz,%o\&é\\\?@ AR XS %\Né%%@o\\ % NS Qb&\zga\% '5{%6"%00‘2‘\ DS S gzo%%o
IR & IR S
R S O X S
& G$ v

ozeooo«*\xeeooo\eb«b N LOL AR LA NLCLOEALRXL L
OO O X RN AN OEO N @\}QO\Q/Q& Q%%&z'bzbo ORI ORI NS
. SO S N ‘b°§ NN 2o O N

& &\2@0«\(‘\ «& NG S

President

Figure 25.12: Stacked area plot.

)
>>> ax.set xticks(range(len(pres)))
>>> ax.set xticklabels(labels=pres.President, ha='right')

In this case, using a line plot indicates some continuity from one president to the next. As
presidential behavior should be somewhat independent from previous administrations, I prefer a
stacked bar plot instead:
>>> (pres

.plot.bar(x="'President’,
y="'Background Imagination Integrity Intelligence Luck '\
'"Willing_to_take risks Ability to compromise'.split(),
rot=45, stacked=True)
)

>>> ax.set xticks(range(len(pres)))
>>> ax.set _xticklabels(labels=pres.President, ha='right')

25.5 Column Distributions with KDEs, Histograms, and Boxplots

If you have numeric information in columns, you can run summary statistics on the columns with
.describe. To visualize the distribution for each column, you can plot with .hist or .density.

I'm going to shuffle the presidential data around and put the president’s name in the columns,
with the numeric ratings in the index. I'm going to limit this to nine presidents:

>>> (pres
.set_index('President')
.loc[:, 'Background':'Average rank']
.iloc[:9]
T
)

224

25.5. Column Distributions with KDEs, Histograms, and Boxplots

a——]

Emm Background
EEE |magination
BN |ntegrity

mmm ntelligence
mm | uck

mmm Willing_to_take_risks

B Ability_to_compromise

250

200

150

o
o
—

o o
Lo

President

Figure 25.13: Stacked bar plot.

William Henry Harrison

George Washington

President
Background

22
38
28
37
44

NN O

Imagination
Integrity

Intelligence

Luck

44
37
39
39

+ AN «— N —

Foreign_policy
Avoid_crucial_mistakes
Experts' view

Overall

38

—

Average rank

[22 rows x 9 columns]

The .describe method summarizes each column, in this case the scores for each president:

.set index('President')
.loc[:,

>>> (pres

"Average_rank ']

'Background ':

.iloc[:9]

.describe()

22.000000
36.969091

22.000000
3.681818
4.444219

count
mean
std
min

5.485124
22.060000
36.250000
38.000000
40.750000
44.000000

1.060000
1.600000
2.000000
5.000000
18.600000

25%
50%

75%
max

225

25. Plotting with Dataframes

0.12 President
George Washington
0.10 John Adams

Thomas Jefferson

0.08 James Madison
2 James Monroe
2 0.06 :
S John Quincy Adams
o Andrew Jackson

0.04 Martin Van Buren
\ William Henry Harrison

0.02 \
0.00 b . &

-10 0 10 20 30 40 50

Figure 25.14: Kernel density estimation showing the distribution of scores for each president.

[8 rows x 9 columns]

Let’s visualize each president’s scores with a Kernel Density Estimation (KDE):

>>> (pres
.set_index('President')
.loc[:, 'Background':'Average rank']
.iloc[:9]
T

.plot.density()
)

You can also create a histogram. This data does not create very pretty histograms because there
are not many scores:

>>> (pres
.set_index('President')
.loc[:, 'Background':'Average rank']
.iloc[:9]
T

.plot.hist()
)

Finally, you can create boxplots to summarize the distributions of the columns:

>>> ax = (pres
.set_index('President')

.loc[:, 'Background':'Average rank']
.iloc[:9]

T

.plot.box()

e)
>>> ax.set xticklabels(labels=(pres.President[:9]), ha='right')

Method Description

226

25.5. Column Distributions with KDEs, Histograms, and Boxplots

.plot(ax=None, style=None,
subplots=False, logx=False, logy=False,
xticks=None, yticks=None, x1lim=None,
ylim=None, xlabel=None, ylabel=None,
rot=None, fontsize=None, colormap=None,
table=False, **kwargs)

.plot.area(x=None, y=None, stacked=True)

.plot.bar(x=None, y=None, stacked=False)

.plot.barh(x=None, y=None, stacked=False)

.plot.kde(bw_method="'scott', ind=None)

.plot.density()
.plot.hist(bins=10)

.plot.box(by=None)
.plot.scatter(x=None, y=None, c=None,
s=None, **kwargs)

.plot.hexbin(x=None, y=None, C=None,
reduce C_function=None, gridsize=100)

.plot.line(x=None, y=None, color=None)

.plot.pie()

Common plot parameters. Use ax to use existing
Matplotlib axes, style for color and marker style
(see matplotlib.marker), subplots to create a new
plot for each column, _ticks to specify tick
locations, _lim to specify tick limits, _label to
specify x/y label (default to index/column name),
rot to rotate labels, fontsize for tick label size,
colormap for coloring, position, table to create a
table with data. Additional arguments are passed
to plt.plot.

Create a stacked area plot. Use column x for x-axis.
Plot each y (can be a list) column as a bar. Use
stack=False to create an unstacked plot.

Create a bar plot. Use column x for x-axis. Plot each y
(can be a list) column as a bar. Use stack=True to
stack bars for each x value.

Create a horizontal bar plot. Use column y for x-axis.
Plot each x (can be a list) column as a bar. Use
stack=True to stack bars for each y value.

Create a Kernel Density Estimate plot. Each column
of the dataframe will get its own plot. Use
bw_method to calculate estimator bandwidth (see
scipy.stats.gaussian_kde). Use ind to specify
evaluation points for PDF estimation (NumPy
array of points, or integer with equally spaced
points).

Synonym of .plot.kde.

Create a histogram. Each column of the dataframe
will get its own plot. Use bins to change number of
bins.

Create boxplots for each column against the index.

Create a scatter plot. y can only be a single column
name, not a list. Can use ¢ parameter to specify a
column to color by. Can use s parameter to specify
a column to size points by.

Create a hexagonal binning plot. y can only be a
single column name, not a list. C can be a column
containing an x,y point. reduce_C_functionis a
callable that reduces values in a bin (default
np.mean. gridsize is number of hexes in x direction
or (x,y) pair.

Plot all columns against the index in the x-axis. Or
specify a column for the x-axis with x, and which
column(s) you want to plot as line(s) with y. color
can be a single string specifying a color, a list of
colors to cycle over, or a dictionary mapping
column to color.

A method you shouldn’t use. (Use .bar instead.)

Table 25.1: Dataframe Plotting Methods

227

25. Plotting with Dataframes

—_
(o]

President
14 mmm George Washington
B John Adams
12 B Thomas Jefferson
>10 B James Madison
s B James Monroe
2 8 John Quincy Adams
:“j mmm Andrew Jackson
6 [Martin Van Buren
4 I mmm William Henry Harrison
2 Illl" LI lhm
0 III I l [|]] IIII H N I

Figure 25.15: Histogram showing the distribution of scores for each president.

: =

o
O —
30 ==
T 8
o
20 (e}
O
(@)
o |
10
(@)
0
N 3 N o ¢ o Qo o N
S o &S & S o & & &
& s N 3 5 v & NS &
$®¢;<‘ S ¥ Q?‘\ & & & < 6\2\
> @ N N S O
e & 2 S S O &
s N ¥ k 3 ¥ W &
o Y NG
&

Figure 25.16: Boxplot showing the distribution of scores for each president.

228

25.6. Summary

25.6 Summary

In this chapter, we explored basic plotting functionality with series objects. We showed a little bit
of the functionality that you get when plotting with a data frame. We will explore more of this later.
Also note that because the plotting functionality is built on top of Matplotlib, you can customize
the plot using Matplotlib.

25.7 Exercises
With a dataset of your choice:

1. Create a histogram from a numeric column. Change the bin size.
Create a boxplot from a numeric column.

Create a Kernel Density Estimate plot from a numeric column.
Create a line from a numeric column.

Create a bar plot from a frequency count of a categorical column.

AN L T

Create a pie plot from a frequency count of a categorical column.

229

Chapter 26

Reshaping Dataframes with Dummies

In this chapter, we will explore various options for manipulating and reshaping a dataframe.
Various patterns will pop up when you start analyzing data, and we will give you the tools that
you need to deal with them.

26.1 Dummy Columns

Creating dummy columns is one way to convert a categorical column into numeric columns. The
process is straightforward. If you have a column that has repeated string values, create a new
column for each of those values and insert a 1 or a 0 in each new column if corresponds to the
original value.

We will look at a concrete example using the JetBrains Python 2020 survey data. The job
columns are almost in dummy format as is. But instead of having entries of 1 and 0, they have
entries of the job title and NaN:

>>> jb.filter(like="'job.role")

job.role.DBA ... job.role.Other
0 NaN ... NaN
1 NaN ... NaN
2 NaN ... NaN
3 NaN ... NaN
4 NaN ... NaN
54457 NaN ... NaN
54458 NaN ... NaN
54459 NaN ... NaN
54460 NaN ... NaN
54461 NaN ... NaN

[64462 rows x 13 columns]

First, we will collapse these job columns into a single column, and then I will show how to
create proper dummy columns. I'm building up the chain to collapse them and walk through each
link in the chain. After we have the job columns from above, we will use the .where method to
insert 1 instead of the job name:
>>> (jb

.filter(like=r'job.role.*t"')
.where(jb.isna(), 1)

)
job.role.DBA ... job.role.Systems analyst job.role.Other

231

26. Reshaping Dataframes with Dummies

0 NaN ... NaN NaN
1 NaN ... NaN NaN
2 NaN ... NaN NaN
3 NaN ... NaN NaN
4 NaN ... NaN NaN
54457 NaN ... 1 NaN
54458 NaN ... NaN NaN
54459 NaN ... NaN NaN
54460 NaN ... NaN NaN
54461 NaN ... NaN NaN

[64462 rows x 13 columns]

Now, we will replace NaN with 0:
>>> (jb
.filter(like=r'job.role.*t")
.where(jb.isna(), 1)

.fillna(0)
)

job.role.DBA ... Jjob.role.Systems analyst job.role.Other
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
54457 0 1 0
54458 0 0 0
54459 0 0 0
54460 0 0 0
54461 0 0 0

[64462 rows x 13 columns]

Next, we use the .idxmax method. This method scans along an axis and reports the index (or
column) where the maximum value is found. In our case, each row should have a single value
corresponding to the column of the job:
>>> (jhb

.filter(like=r'job.role")
.where(jb.isna(), 1)

.fillna(0)

.idxmax(axis="'columns')
o)
0 job.role.Business analyst
1 job.role.Developer / Programmer
2 job.role.Developer / Programmer
3 job.role.DBA
4 job.role.DBA
54457 job.role.Systems analyst
54458 job.role.DBA
54459 job.role.CIO / CEO / CTO
54460 job.role.Developer / Programmer
54461 job.role.Architect

Length: 54462, dtype: object

232

26.2. Undoing Dummy Columns

Finally, we will remove the string 'job.role. ':

>>> job = (jb
.filter(like=r'job.role"')
.where(jb.isna(), 1)
.fillna(0)
.idxmax (axis='columns')
.str.replace('job.role.',

, regex=False)

)

>>> job

0 Business analyst
1 Developer / Programmer
2 Developer / Programmer
3 DBA
4 DBA
54457 Systems analyst
54458 DBA
54459 cI0 / CE0O / CTO
54460 Developer / Programmer
54461 Architect

Length: 54462, dtype: object

The job series now looks like a column with categorical data. This is the type of column we
usually want to convert into dummy columns.

If you want to create dummy columns from a series (or a dataframe that has multiple string
columns), call the pd.get_dummies function. Note that this is not a method on a series or a dataframe:

>>> dum = pd.get _dummies(job)

>>> dum

Architect ... Technical writer
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
54457 0 0
54458 0 0
54459 0 0
54460 0 0
54461 1 0

[54462 rows x 13 columns]

26.2 Undoing Dummy Columns

There are multiple ways to go from data arranged in dummy columns to a single column. The
most readable is the slowest using . idxmax. Note you will want to execute this on a dataframe that
only has the dummy columns:

>>> dum.idxmax (axis="'columns ')

0 Business analyst
1 Developer / Programmer
2 Developer / Programmer
3 DBA
4 DBA

233

26. Reshaping Dataframes with Dummies

54457 Systems analyst

54458 DBA
54459 CIO / CEO / CTO
54460 Developer / Programmer
54461 Architect

Length: 54462, dtype: object

The fastest (about 8x faster on my machine) involves a little bit of NumPy:

>>> i, j = np.where(dum)
>>> pd.Series(dum.columns[j], 1)

0 Business analyst
1 Developer / Programmer
2 Developer / Programmer
3 DBA
4 DBA
54457 Systems analyst
54458 DBA
54459 CIO / CEO / CTO
54460 Developer / Programmer
54461 Architect
Length: 54462, dtype: object
Pick your poison.
Method Description
.filter(items=None, like=None, Return a dataframe filtered by index axis labels. Use
regex=None, axis=1) items to specify a list of names. Use like to specify
a substring. Use regex to specify a regular
expression.
.where(cond, other=nan, axis=None, Replace the values where cond (a boolean array) is
level=None, errors='raise’, False. Generally I use this on series.
try _cast=None)
.fillna(value=None, method=None, Return a dataframe with missing values filled in.
axis=None, limit=None, downcast=None) value can be a scalar, dictionary (mapping column
to value), series (values for index) or dataframe.
Use method for 'bfill’', 'pad', or 'ffill'. You can
limit the replacements with 1imit. Use downcast to
specify a dictionary mapping a column to new
type (ie from float64 to int64).
.idxmax(axis=0, skipna=True) Return the index of first maximum value over an
axis.
pd.get dummies(data, prefix=None, Return a dataframe with string/ categorical columns
prefix_sep='_"', dummy _na=False, from data converted into dummy columns.
sparse=False, drop_first=False,
dtype=None)
np.where_dummies(condition, x=None, Return a numpy array where condition (boolean
y=None) array) is True using value x (scalar, series) and y

(scalar, series) otherwise.

Table 26.1: Dataframe Reshaping Methods

234

26.3. Summary

26.3 Summary

Dummy columns are one way to encode categorical variables as numbers. Many will use this
option to prepare data for machine learning because many machine learning algorithms do not
support string data, only numeric.

26.4 Exercises
With a dataset of your choice:

1. Create dummy columns derived from a string column.

2. Undo the dummy columns.

235

Chapter 27
Reshaping By Pivoting and Grouping

This chapter will explore one of the most powerful options for data manipulations, pivot tables.
Pandas provides multiple syntaxes for creating them. One uses the .pivot_table method, the other
common one leverages the .groupby method, you can also represent some of these operations with
the pd.crosstab function.

We will explore all of these using the cleaned-up JetBrains survey data:

>>> jb2

age are_you datascientist ... years of coding python3 ver
1 21 True ... 3.0 3.6
2 30 False 3.0 3.6
10 21 False 1.0 3.8
1 21 True 3.0 3.9
13 30 True 3.0 3.7
54456 30 False 6.0 3.6
54457 21 False 1.0 3.6
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7
54461 21 False 1.0 3.8

[13711 rows x 20 columns]

27.1 A Basic Example

When your boss asks you to get numbers by X column”, that should be a hint to pivot (or group)
your data. Assume your boss asked, ”What is the average age by the country for each employment
status?” This is like one of those word problems that you had to learn how to do in math class, and
you needed to translate the words into math operations. In this case, we need to pick a pandas
operation to use and then map the problem into those operations.

I would translate this problem into:

 Put the country in the index
* Have a column for each employment status

e Put the average age in each cell

These map cleanly to the parameters of the .pivot_table method. One solution would look like
this:

237

27. Reshaping By Pivoting and Grouping

>>> (jb2

.pivot_table(index='country live', columns='employment status',

values="age', aggfunc='mean')

)

employment_status Fully employed

country _live

Algeria

Argentina 30.
Armenia 22.
Australia 32.
Austria 31
United States 32.
Uruguay

Uzbekistan

Venezuela 29.
Viet Nam 22.

[76 rows x 4 columns]

31.2
632184
071429
935622

.619565

429163
27.0
21.0

769231

857143

Working student

<NA>
23.0
<NA>
24.125
25.5

21.842697
<NA>
<NA>
30.0
21.0

It turns out that we can use the pd.crosstab function as well. Because this is a function, we need
to provide the data as series rather than the column names:

>>> pd.crosstab(index=jb2.country live, columns=jb2.employment status,

values=jb2.age, aggfunc='mean')

employment status Fully employed

country live

Algeria

Argentina 30.
Armenia 22.
Australia 32.
Austria 31
United States 32.
Uruguay

Uzbekistan

Venezuela 29.
Viet Nam 22.

[76 rows x 4 columns]

31.2
632184
071429
935622

.619565

429163
27.0
21.0

769231

857143

Working student

<NA>
23.0
<NA>
24.125
25.5

21.842697
<NA>
<NA>
30.0
21.0

Finally, we can do this with a .groupby method call. The call to .groupby returns a
DataFrameGroupBy object. It is a lazy object and does not perform any calculations until we indicate
which aggregation to perform. We can also pull off a column and then only perform an aggregation
on that column instead of all of the non-grouped columns.

This operation is a little more involved. We pull off the age colum and then calculate the mean
for each country_live and employment_status group. Then we leverage .unstack to pull out the inner-
most index and push it up into a column (we will dive into .unstack later). You can think of . groupby
and subsequent methods as the low-level underpinnings of .pivot_table and pd.crosstab:

>>> (jbz

.groupby (['country live',

.age
.mean ()
.unstack ()

)

employment_status Fully employed

country live

238

"employment status'])

Working student

27.1. A Basic Example

Pivot Tables

auto

cylinders

drive

8.00

Rear-Wheel

8.00

Rear-Wheel

12.00

Rear-Wheel

4.00

Front-Whee

Front-Whee

8.00

Rear-Wheel

8.00

Rear-Wheel

8.00

Rear-Wheel

8.00

Rear-Wheel

(auto.pivot_table(aggfunc="max",
index="year",
columns="make",
values="city08")

Figure 27.1: The .pivot_table method allows you to pick column(s) for the index, column(s) for the column,
and column(s) to aggregate. (If you specify multiple columns to aggregate, you will get hierarchical

columns.)

239

27. Reshaping By Pivoting and Grouping

Cross Tabulation
auto

cylinders drive
8.00| Rear-Wheel
8.00 | Rear-Wheel
12.00| Rear-Wheel
4.00 | Front-Whee

Front-Whee
8.00 | Rear-Wheel
8.00| Rear-Wheel
8.00| Rear-Wheel
8.00 | Rear-Wheel

(pd.crosstab(aggfunc="max",
index=auto.year,
columns=auto.make,
values=auto.city08)

Figure 27.2: The pd.crosstab function allows you to pick column(s) for the index, column(s) for the column,
and a column to aggregate. You cannot aggregate multiple columns (unlike .pivot_table).

Algeria 31.2 ... <NA>
Argentina 30.632184 ... 23.0
Armenia 22.071429 ... <NA>
Australia 32.935622 ... 24.125
Austria 31.619565 ... 25.5
United States 32.429163 ... 21.842697
Uruguay 27.0 ... <NA>
Uzbekistan 21.0 ... <NA>
Venezuela 29.769231 ... 30.0
Viet Nam 22.857143 ... 21.0

[76 rows x 4 columns]

Many programmers and SQL analysts find the .groupby syntax intuitive, while Excel junkies
often feel more at home with the .pivot_table method. The crosstab function works in some

240

27.2. Using a Custom Aggregation Function

Groupby Operation

auto

cylinders drive
8.00| Rear-Wheel
8.00| Rear-Wheel
12.00 | Rear-Wheel
4.00 | Front-Whee

Front-Whee
8.00 | Rear-Wheel
8.00| Rear-Wheel
8.00| Rear-Wheel
8.00 | Rear-Wheel

(auto.groupby(['year', 'make'])
.city08
.max()
.unstack())

Figure 27.3: The .groupby method allows you to pick a column(s) for the index and column(s) to aggregate.
You can .unstack the inner column to simulate pivot tables and cross-tabulation.

situations but is not as flexible. It makes sense to learn the different options. The .groupby method
is the foundation of the other two, but a cross-tabulation may be more convenient.

27.2 Using a Custom Aggregation Function

Your boss thanks you for providing insight on the age of employment status by country and says
she has a more important question: “What is the percentage of Emacs users by country?”

We will need a function that takes a group (in this case, a series) of country respondents about
IDE preference and returns the percent that chose emacs:

>>> def per_emacs(ser):
return ser.str.contains('Emacs').sum() / len(ser) * 100

241

27. Reshaping By Pivoting and Grouping

Grouping Data

auto
year cylinders drive
1985 4.00| Rear-Wheel
1985 12.00| Rear-Wheel
1985 4.00| Front-Whee
1985 8.00| Rear-Wheel
1993 4001 4Wheel or
1993 4.00| Front-Whee
1993 4.00| Front-Whee
1993 4.00| 4-Wheel or
1993 4.00| 4-Wheel or
1993 4.00| 4-Wheel or
(auto
.groupby ("make")
.mean())
year cylinders

1984.33 5.00

1987.00 6.00

2005.48 5.24

1998.58 5.10

198448 541

2002.81 4.55

2002.35 4.86

1991.50 7.81

1988.38 4.00

2013.95 3.00

Figure 27.4: When your boss asks you to get the average values by make, you should recognize that you
need to pull out .groupby('make").

Note

When you need to calculate a percentage in pandas, you can use the .mean method. The
following code is equivalent to the above:

>>> def per_emacs(ser):
return ser.str.contains('Emacs').mean() * 100

We are now ready to pivot. In this case we still want country in the index, but we only want a
single column, the emacs percentage. So we don’t provide a columns parameter:

>>> (jb2
.pivot_table(index='country live', values='ide main', aggfunc=per_emacs)

)
ide_main
country_live
Algeria 0.000000

242

27.2. Using a Custom Aggregation Function

Groupby: Split, Apply, & Combine

scores

teacher

Suzy 16 89.00
Fred 15 nan

Split scores.groupby('teacher"')

- o~

0 Adam

age test1 test2 name age test1 test2
2 Suzy 16| 89.00 94
3 Fred 15 nan 88

1 Bob

Apply l .median() l

age age 15.50
test1 test1 89.00
test2 test2 91.00

Combine \ /

Figure 27.5: A groupby operation splits the data into groups. You can apply aggregate functions to the
group. Then the results of the aggregates are combined. The column we are grouping by will be placed in

the index.

Argentina
Armenia
Australia
Austria

United States
Uruguay
Uzbekistan
Venezuela
Viet Nam

3.669725
0.0006000
3.649635
1.562500
4.486466
0.000000
0.006000
0

0

.000006
.0000006

[76 rows x 1 columns]

Using pd.crosstab is a little more complicated as it expects a ”cross-tabulation” of two columns,
one column going in the index and the other column going in the columns. To get a “column” for

243

27. Reshaping By Pivoting and Grouping

the cross tabulation, we will assign a column to a single scalar value, (which will trick the cross
tabulation into creating just one column with the name of the scalar value):

>>> pd.crosstab(index=jb2.country live,

columns=jb2.assign(iden="'emacs _per').iden,
. values=jb2.ide_main, aggfunc=per_emacs)
iden emacs_per

country live

Algeria 0.000000
Argentina 3.669725
Armenia 0.000000
Australia 3.649635
Austria 1.562500
United States 4.486466
Uruguay 0.000000
Uzbekistan 0.000000
Venezuela 0.000000
Viet Nam 0.000000

[76 rows x 1 columns]

Finally, here is the .groupby version. I find this one very clear. Group by the country_live column,
pull outjust the ide_main columns. Calculate the percentage of emacs users for each of those groups:
>>> (jb2

.groupby ('country live')
[['ide _main']]
.agg(per_emacs)

)

ide_main
country live
Algeria 0.000000
Argentina 3.669725
Armenia 0.000000
Australia 3.649635
Austria 1.562500
United States 4.486466
Uruguay 0.000000
Uzbekistan 0.000000
Venezuela 0.000000
Viet Nam 0.000000

[76 rows x 1 columns]

27.3 Multiple Aggregations

Assume that your boss asked, ”“What is the minimum and maximum age for each country?” When
you see “for each” or "by”, your mind should think that whatever is following either of the terms
should go in the index. This question is answered with a pivot table or using groupby. (We can
use a cross-tabulation, but you will need to add a column to do this, and it feels unnatural to me).

Here is the .pivot_table solution. The country_live column goes in the index parameter. age is
what we want to aggregate, so that goes in the values parameter. And we need to specify a sequence
with min and max for the aggfunc parameter:

244

27.3. Multiple Aggregations

auto

(auto

Grouping Data with Multiple Aggregations

make year cylinders drive
1 Ferrari 1985 12.00 | Rear-Wheel
2 Dodge 1985 4.00| Front-Whee
3 Dodge 1985 8.00 | Rear-Wheel
4 Subaru 1993 4.00| 4-Wheel or
41139 Subaru 1993 4.00| Front-Whee
41140 Subaru 1993 4.00| Front-Whee
41141 Subaru 1993 4.00| 4-Wheel or
41142 Subaru 1993 4.00| 4-Wheel or
41143 Subaru 1993 4.00| 4-Wheel or
|) Hierarchical columns!
.groupby('make")
.agg(['min', 'max']))
year year cylinders cylinders
min max min max
Acura 1986 2020 4.00 6.00
Audi 1984 2020 4.00 12.00
BMW 1984 2020 2.00 12.00
BYD 2012 2019 nan nan
Bentley 1998, 2019 8,00 12,00
VPG 2011 2013 8.00 8.00
Vector 1992 1997 8.00 12.00
Volvo 1984 2019 4.00 8.00
Yuqo 1986 1990 4.00 4.00
smart 2008 2019 3.00 3.00

Figure 27.6: You can leverage the .agg method with .groupby to perform multiple aggregations.

245

27. Reshaping By Pivoting and Grouping

>>> (jh2
.pivot_table(index='country live', values='age',
aggfunc=(min, max))
)
max min
country _live
Algeria 60 18
Argentina 60 18
Armenia 30 18
Australia 60 18
Austria b0 18

United States 60 18

Uruguay 40 21
Uzbekistan 21 21
Venezuela 50 18
Viet Nam 60 18

[76 rows x 2 columns]

When you look at this using the .groupby method, you first determine what you want in the
index, country_live. Then we will pull off the age column from each group. Finally, we will apply
two aggregate functions, min and max:

>>> (jh2

.groupby ('country live')

.age

.agg([min, max])

)
min max

country_live
Algeria 18 60
Argentina 18 60
Armenia 18 30
Australia 18 60
Austria 18 50

United States 18 60

Uruguay 21 40
Uzbekistan 21 21
Venezuela 18 50
Viet Nam 18 60

[76 rows x 2 columns]

Here is the example for pd.crosstab. I don’t recommend this, but provide it to help explain
how cross-tabulation works. Again, we want country_live in the index. With cross-tabulation, we
need to provide a series to splay out in the columns. We cannot use the age column as the columns
parameter because we want to aggregate on those numbers and hence need to set them as the values
parameter. Instead, I will create a new column that has a single scalar value, the string 'age'. We
can provide both of the aggregations we want to use to the aggfunc parameter. Below is my solution.
Note that is has hierarchical columns:
>>> pd.crosstab(jb2.country live, values=jb2.age, aggfunc=(min, max),

columns=jbh2.assign(val="age').val)
max min
val age age
country live

246

27.4. Per Column Aggregations

Algeria 60 18
Argentina 60 18
Armenia 386 18
Australia 60 18
Austria 50 18

United States 60 18

Uruguay 40 21
Uzbekistan 21 21
Venezuela 50 18
Viet Nam 60 18

[76 rows x 2 columns]

27.4 Per Column Aggregations

In the previous example, we looked at applying multiple aggregations to a single column. We
can also apply multiple aggregations to many columns. Here we get the minimum and maximum

value of each numeric column by country:

>>> (jh2
.pivot_table(index='country live',
aggfunc=(min, max))

)

age ... years_of _coding

max min ... max min
country_live e
Algeria 60 18 ... 11.0 1.0
Argentina 60 18 ... 11.0 1.0
Armenia 30 18 ... 11.0 1.0
Australia 60 18 ... 11.0 1.0
Austria 50 18 ... 11.06 1.0
United States 60 18 ... 11.0 1.0
Uruguay 40 21 ... 11.0 1.0
Uzbekistan 21 21 ... 6.0 1.0
Venezuela 50 18 ... 11.0 1.0
Viet Nam 60 18 ... 6.0 1.0

[76 rows x 32 columns]

Here is the groupby version:
>>> (jb2
.groupby ('country_live')
.agg([min, max])

)

age ... years_of _coding

max min ... max min
country_live -
Algeria 60 18 ... 11.0 1.0
Argentina 60 18 ... 11.0 1.0
Armenia 36 18 ... 11.0 1.0
Australia 60 18 ... 11.0 1.0
Austria 50 18 ... 11.06 1.0
United States 60 18 ... 11.0 1.0

247

27. Reshaping By Pivoting and Grouping

Uruguay 40 21 ... 11.0 1.0
Uzbekistan 21 21 ... 6.0 1.0
Venezuela 50 18 ... 1.0 1.0
Viet Nam 60 18 6.0 1.0

[76 rows x 32 columns]

I'm not going to do this with pd.crosstab, and I recommend that you don’t as well.

Sometimes, we want to specify aggregations per column. With both the .pivot_table and
.groupby methods, we can provide a dictionary mapping a column to an aggregation function or a
list of aggregation functions.

Assume your boss asked: ”“What are the minimum and maximum ages and the average team
size for each country?”. Here is the translation to a pivot table:

>>> (jb2
.pivot_table(index='country live',
aggfunc={'age': ['min', 'max'],
"team size': 'mean'})
)
age team_size
max min mean
country live
Algeria 60 18 3.722222
Argentina 60 18 4.146789
Armenia 30 18 4.235294
Australia 60 18 3.354015
Austria b0 18 3.132812
United States 60 18 4.072673
Uruguay 40 21 3.700000
Uzbekistan 21 21 2.750000
Venezuela 50 18 3.227273
Viet Nam 60 18 4.666667

[76 rows x 3 columns]

Here is the groupby version:
>>> (jb2
.groupby ('country live')
.agg({'age': ['min', 'max'],

"team_size': 'mean'})
)

age team_size
min max mean

country live
Algeria 18 60 3.722222
Argentina 18 60 4.146789
Armenia 18 30 4.235294
Australia 18 60 3.354015
Austria 18 50 3.132812
United States 18 60 4.072673
Uruguay 21 40 3.700000
Uzbekistan 21 21 2.750000
Venezuela 18 50 3.227273
Viet Nam 18 60 4.666667

248

27.5. Grouping by Hierarchy

[76 rows x 3 columns]

One nuisance of these results is that they have hierarchical columns. In general, I find these
types of columns annoying and confusing to work with. They do come in useful for stacking and
unstacking, which we will explore in a later section. However, I like to remove them, and I will
also show a general recipe for that later.

But I want to show one last feature that is specific to .groupby and may make you favor it as
there is no equivalent functionality found in .pivot_table. That feature is called named aggregations.
When calling the .agg method on a groupby object, you can use a keyword parameter to pass in
a tuple of the column and aggregation function. The keyword parameter will be turned into a
(flattened) column name.

We could re-write the previous example like this:
>>> (jb2
.groupby ('country_live')

.agg(age min=('age', min),
age max=('age', max),
team_size_mean=('team_size', 'mean')
..)
)
age_min age_max team_size _mean
country_live

Algeria 18 60 3.722222
Argentina 18 60 4.146789
Armenia 18 30 4.235294
Australia 18 60 3.354015
Austria 18 50 3.132812
United States 18 60 4.072673
Uruguay 21 40 3.700000
Uzbekistan 21 21 2.750000
Venezuela 18 50 3.227273
Viet Nam 18 60 4.666667

[76 rows x 3 columns]

Notice that the above result has flat columns.

27.5 Grouping by Hierarchy

I just mentioned how much hierarchical columns bothered me. I'll admit, they are sometimes
useful. Now I'm going to show you how to create hierarchical indexes. Suppose your boss asked
about minimum and maximum age for each country and editor. We want to have both the country
and the editor in the index. We just need to pass in a list of columns we want in the index:

>>> (jb2.pivot_table(index=["'country live', 'ide main'],
values='age', aggfunc=[min, max]))

min max
age age
country_live ide_main
Algeria Atom 21 60
Eclipse + Pydev 18 18
IDLE 40 40
Jupyter Notebook 30 30
Other 30 30

249

27. Reshaping By Pivoting and Grouping

Flattening Grouping Data by Multiple Columns

auto
make year cylinders drive
1 Ferrari 1985 12.00| Rear-Wheel
2 Dodge 1985 4.00| Front-Whee
3 Dodge 1985 8.00| Rear-Wheel
4 Subaru 1993 4.00| 4-Wheel or
5 Subary 1993 400 Front-Whee
41139 Subaru 1993 4.00| Front-Whee
41140 Subaru 1993 4.00| Front-Whee
41141 Subaru 1993 4.00| 4-Wheel or
41142 Subaru 1993 4.00| 4-Wheel or
41143 Subaru 1993 4.00| 4-Wheel or
(auto
.groupby (['make', 'year'])
.max()
.reset_index())
make year cylinders
0 Acura 1986 6.00
1 Acura 1987 6.00
2 Acura 1988 6.00
3 Acura 1989 6.00
1345 smart 2015 3.00
1346 smart 2016 3.00
1347 smart 2017 3.00
1348 smart 2018 nan
1349 smart 2019 nan

Figure 27.7: Grouping with a list of columns will create a multi-index, an index with hierarchical levels.

Viet Nam Other 21 21
PyCharm Community Edition 21 30
PyCharm Professional Edition 21 21
VS Code 18 30
Vim 21 40

[813 rows x 2 columns]

Here is the groupby version:

>>> (jb2
.groupby (by=["'country live', 'ide _main'])
[['age"]]
.agg([min, max])
-)
age
min max
country live ide_main
Algeria Atom 21 60

250

27.5. Grouping by Hierarchy

Eclipse + Pydev 18 18
Emacs <NA> <NA>
IDLE 40 40
IntelliJ IDEA <NA> <NA>
Viet Nam Python Tools for Visual Studio (PTVS) <NA> <NA>
Spyder <NA> <NA>
Sublime Text <NA> <NA>
VS Code 18 30
Vim 21 40

[1216 rows x 2 columns]

Those paying careful attention will note that the results of apply multiple aggregations from
.groupby and .pivot_table are not exactly the same. There are a few differences:

e The hierarchical column levels are swapped (age is inside of min and max when pivotting, but
outside when grouping)

¢ The row count differs

I'm not sure why pandas swaps the levels. You could use the .swaplevel method to change that.
However, I would personally use a named aggregation with a groupby for flat columns:
>>> (jh2

.groupby (by=["'country live', 'ide main'])

[['age']]

.agg([min, max])

.swaplevel(axis='columns")

)

min max
age age

country_live ide_main
Algeria Atom 21 60
Eclipse + Pydev 18 18
Emacs <NA> <NA>
IDLE 40 40
IntelliJ IDEA <NA> <NA>
Viet Nam Python Tools for Visual Studio (PTVS) <NA> <NA>
Spyder <NA> <NA>
Sublime Text <NA> <NA>
VS Code 18 30
Vim 21 40

[1216 rows x 2 columns]

>>> (jb2
.groupby (by=["'country_live', 'ide _main'])
.agg(age min=('age', min), age _max=('age', max))
)
age _min age_max
country live ide_main

Algeria Atom 21 60
Eclipse + Pydev 18 18
Emacs <NA> <NA>
IDLE 40 40

251

27. Reshaping By Pivoting and Grouping

IntelliJ IDEA <NA> <NA>
Viet Nanm Python Tools for Visual Studio (PTVS) <NA> <NA>
Spyder <NA> <NA>
Sublime Text <NA> <NA>
VS Code 18 30
Vim 21 40

[1216 rows x 2 columns]

The reason the row count is different is a little more nuanced. I have set the country_live
and ide_main columns to be categorical. When you perform a groupby with categorical columns,
pandas will create the cartesian product of those columns even if there is no corresponding value.
You can see above a few rows with both values of <NA>. The pivot table version (at the start of the
section) did not have the missing values.

Note

Be careful when grouping with multiple categorical columns with high cardinality. You can
generate a very large (and sparse) result!

You could always call .dropna after the fact, but I prefer to use the observed parameter instead:

>>> (jb2
.groupby (by=["'country live', 'ide main'], observed=True)
.agg(age min=("'age', min), age max=('age', max))
.
age min age_max
country_live ide_main
India Atom 18 40
Eclipse + Pydev 18 40
Emacs 21 40
IDLE 18 40
IntelliJ IDEA 21 30
Dominican Republic Vim 21 21
Morocco Jupyter Notebook 30 30
PyCharm Community Edition 21 40
Sublime Text 21 30
VS Code 21 30

[813 rows x 2 columns]

That's looking better!

27.6 Grouping with Functions

Up until now, we have been grouping by various values found in columns. Sometimes I want to
group by something other than an existing column, and I have a few options.

Often, I will create a special column containing the values I want to group by. In addition, both
pivot tables and groupby operations support passing in a function instead of a column name. This
function accepts a single index label and should return a value to group on. In the example below
we group based on whether the index value is even or odd. We then calculate the size of each
group. Here is the grouper function and the .pivot_table implementation:

252

27.6. Grouping with Functions

>>>

def even _grouper(idx):
return 'odd' if idx % 2 else

>>> jb2.pivot_table(index=even_grouper, aggfunc='size')

even 6849
odd 6862
dtype: int64

>>>

even

odd

dtype:

And here is the .groupby version:

(jb2
.groupby(even_grouper)
.size()

)

6849
6862
int64

When we look at time series manipulation later, we will see that pandas provides a handy
pd.Grouper class to allow us to easily group by time attributes.

Method Description

pd.crosstab(index, columns, values=None, Create a cross-tabulation (counts by default) from an

rownames=None, colnames=None,
aggfunc=None, margins=False,
margins_name='A11l', dropna=True,
normalize=False)

.pivot_table(values=None, index=None,
columns=None, aggfunc='mean',
fill_value=None, margins=False,
margins_name='A1l', dropna=True,
observed=False, sort=True)

.groupby(by=None, axis=0, level=None,
as_index=True, sort=True,
group_keys=True, observed=False,
dropna=True)

.stack(level=-1, dropna=True)

index (series or list of series) and columns (series or
list of series). Can specify a column (series) to
aggregate values along with a function, aggfunc.
Using margins=True will add subtotals. Using
dropna=False will keep columns that have no
values. Can normalize over 'all' values, the rows
(*index'), or the 'columns'.

Create a pivot table. Use index (series, column name,

pd.Grouper, or list of previous) to specify index
entries. Use columns (series, column name,
pd.Grouper, or list of previous) to specify column
entries. The aggfunc (function, list of functions,
dictionary (column name to function or list of
functions) specifies function to aggregate values.
Missing values are replaced with fill_value. Set
margins=True to add subtotals/totals. Using
dropna=False will keep columns that have no
values. Use observed=True to only show values that
appeared for categorical groupers.

Return a grouper object, grouped using by (column

name, function (accepts each index value, returns
group name/id), series, pd.Grouper, or list of
column names). Use as_index=False to leave
grouping keys as columns. Common plot
parameters. Use observed=True to only show values
that appeared for categorical groupers. Using
dropna=False will keep columns that have no
values.

Push column level into the index level. Can specify a

column level (-1 is innermost).

253

27. Reshaping By Pivoting and Grouping

.unstack(level=-1, dropna=True)

Push index level into the column level. Can specify
an index level (-1 is innermost).

Table 27.1: Dataframe Pivoting and Grouping Methods

Method

Description

254

Column access
g.agg(func=None, *args, engine=None,
engine_kwargs=None, **kwargs)

g.aggregate
g.all(skipna=True)

g.any(skipna=True)

g.apply(func, *args, **kwargs)

g.count()
g.ewn(com=None, span=None, halflife=None)

g.expanding(min_periods=1, center=False,
axis=0, method='single')

g.filter(func, dropna=True, *args,
**kwargs)

g.first(numeric_only=False, min_count=-1)
g.get_group(name, obj=None)

g.groups

g.head(n=b)

g.idxmax(axis=0, skipna=True)

g.idxmin(axis=0, skipna=True)

Access a column by attribute or index operation.

Apply an aggregate func to groups. func can be
string, function (accepting a column and returning
a reduction), a list of the previous, or a dictionary
mapping column name to string, function, or list of
strings and / or functions.

Same as g.agg.

Collapse each group to True if all the values are
truthy.

Collapse each group to True if any the values are
truthy.

Apply a function to each group. The function should
accept the group (as a dataframe) and return scalar,
series, or dataframe. These return a series,
dataframe (with each series as a row), and a
dataframe (with the index as an inner index of the
result) respectively.

Count of non-missing values for each group.

Return an Exponentially Weighted grouper. Can
specify center of mass (com), decay span, or halflife.
Will need to apply further aggregation to this.

Return an expanding Window object. Can specify
minimum number of observations per period
(min_periods), set label at center of window, and
whether to execute over 'single' column or whole
group ('table'). Will need to apply further
aggregation to this.

Return the original dataframe but with filtered
groups removed. func is a predicate function that
accepts a group and returns True to keep values
from group. If dropna=False, groups that evaluate
to False are filled with NaN.

Return the first row of each group. If min_count set to
positive value, then group must have that many
rows or values are filled with NaN.

Return a dataframe with named group.

Property with dictionary mapping group name to list
of index values. (See .indices.)

Return the first n rows of each group. Uses original
index.

Return an index label of maximum value for each
group.

Return an index label of minimum value for each

group.

27.6. Grouping with Functions

.indices

.last(numeric_only=False, min_count=-1)

.max(numeric_only=False, min_count=-1)

.mean(numeric_only=True)
.min(numeric_only=False, min_count=-1)

.ndim
.ngroup(ascending=True)

.ngroups
.nth(n, dropna=None)
.nunique(dropna=True)

.ohlc()

.pipe(func, *args, **kwargs)
.prod(numeric_only=True, min_count=0)
.quantile(g=.5, interpolation='linear"')

.rank (method="average',
na_option='keep', ascending=True,
pct=False, axis=0)

.resample(rule, *args, **kwargs)

.rolling(window_size)

.sample(n=None, frac=None,
replace=False, weights=None,
random_state=None)

.sem(ddof=1)

.shift(periods=1, freq=None, axis=0,
fill _value=None

.size()

.skew(axis=0, skipna=True, level=None,
numeric_only=False)

.std(ddof=1)

.sum(numeric_only=True, min_count=0)

Property with a dictionary mapping group name to
np.array of index values. (See .groups.)

Return the last row of each group. If min_count set to
positive value, then group must have that many
rows or values are filled with NaN.

Return the maximum row of each group. If min_count
set to positive value, then group must have that
many rows or values are filled with NaN.

Return the mean of each group.

Return the minimum row of each group. If min_count
set to positive value, then group must have that
many rows or values are filled with NaN.

Property with the number of dimensions of result.

Return a series with original index and values for
each group number.

Property with the number of groups.

Take the nth row from each group.

Return a dataframe with unique counts for each
group.

Return a dataframe with open, high, low, and close
values for each group.

Apply the func to each group.

Return a dataframe with product of each group.

Return a dataframe with quantile for each group.
Can pass a list for g and get inner index for each
value.

Return a dataframe with numerical ranks for each
group. method allows to specify tie handling.
'average', 'min', 'max', 'first' (uses order they
appear in series), 'dense' (like 'min', but rank only
increases by one after tie). na_option allows you to
specify NaN handling. 'keep' (stay at NaN), 'top'
(move to smallest), 'bottom' (move to largest).

Create a resample object with offset alias frequency
specified by rule. Will need to apply further
aggregation to this.

Create a rolling grouper. Will need to apply further
aggregation to this.

Return a dataframe with sample from each group.
Uses original index.

Return the mean of standard error of mean each
group. Can specify degrees of freedom (ddof).

Create a shifted values for each group. Uses original
index.

Return a series with size of each group.

Return a series with numeric columns inserted as
inner level of grouped index with unbiased skew.

Return the standard deviation of each group. Can
specify degrees of freedom (ddof).

Return a dataframe with the sum of each group.

255

27. Reshaping By Pivoting and Grouping

g.tail(n=b) Return the last n rows of each group. Uses original
index.

g.take(indices, axis=0) Return a dataframe with the index positions (indices)
from each group. Positions are relative to group.

g.transform(func, *args, **kwargs) Return a dataframe with the original index. The

function will get passed a group and should return
dataframe with same dimensions as group.
g.var(ddof=1) Return the variance of each group. Can specify
degrees of freedom (ddof).
Table 27.2: Groupby Methods and Operations

27.7 Summary

Grouping is one of the most powerful tools that pandas provides. It is the underpinning of the
.pivot_table method, which in turn implements the pd.crosstab function. These constructs can
be hard to learn because of the inherent complexity of the operation, the hierarchical nature of
the result, and the syntax. If you are using .groupby remember to write out your chains and step
through them one step at a time. That will help you understand what is going on. You will also
need to practice these. Once you learn the syntax, practicing will help you master these concepts.

27.8 Exercises
With a dataset of your choice:

1. Group by a categorical column and take the mean of the numeric columns.
2. Group by a categorical column and take the mean and max of the numeric columns.

3. Group by a categorical column and apply a custom aggregation function that calculates the
mode of the numeric columns.

4. Group by two categorical columns and take the mean of the numeric columns.

5. Group by binned numeric column and take the mean of the numeric columns.

256

Chapter 28
More Aggregations

In the previous chapter, we introduced grouping and the related pivoting and cross-tabulation
functionality of pandas. We will dive in a little deeper and explore the .transform method and the
.filter method of a groupby object.

28.1 Aggregations while Keeping Rows

Let’s assume we are still looking at the JetBrains dataset and wanted to add a new column, the count
of responses from a country. One way to do that would be to create a pivot table (or groupby) of
the count of responses for each country and then merge that data back into the original dataframe.
However, if we use the .transform method following .groupby we get the aggregation, but they are
not collapsed. The result is in terms of the original index.

This is one of the reasons I gravitate towards .groupby instead of .pivot_table, the flexibility.
(Coming from a software backward and familiarity with SQL probably doesn’t hurt either).

Here is the count of the country for each original row. We can provide our own function to the
.transform method, or take advantage of existing functions. We want to use the 'size' function
to get new counts. However, we just want to apply it to a single column, it doesn’t matter which
column we choose, so I will use age:

>>> (jh2
.groupby ('country_live')
.age

.. .transform('size"')

o)

1 1063

2 2697

10 334

11 2697

13 135

54456 99

54457 502

54459 502

54460 298

54461 18

Name: age, Length: 13711, dtype: inté64

Here is the code to create a new column country_responses:

>>> (jh2
.assign(country responses=(jh2

257

28. More Aggregations

Transform Operation

auto
make year cylinders drive city08
0 BMW 1984 4.00 nan 21
1 BMW 1984 4.00 nan 21
2 Chevrolet 1984 8.00 nan 13
3 Chevrolet 1984 8.00 nan 13
— ford 1984 400 nan 21
232 BMW 2020 4.00| Rear-Wheel 21
233 Chevrolet 2020 4.00| Front-Whee 22
234 Chevrolet 2020 4.00| Front-Whee 30
235 Ford 2020 4.00 | Front-Whee 24
236 Ford 2020 4.00 | Front-Whee 24
(auto (auto
.groupby(['year', 'make']) .groupby(['year', 'make'])
.city08 .city08
.mean()) .transform('mean'))
.transform preserves original index
1984 BMW 21.00 0 21.00
1984 Chevrolet 13.00 1 21.00
1984 Ford 21.00 2 13.00
1985 BMW 19.50 3 13.00
2019 Ford 16.00 232 22.50
2019 Tesla 132.00 233 26.00
2020 BMW 22.50 234 26.00
2020 Chevrolet 26.00 235 24.00
2020 Ford 24.00 236 24.00

Figure 28.1: The .transform method allows us to perform aggregations on groups but returns the resulting
aggregations in terms of the original index.

.groupby ('country live")
.age
.transform('size"')))

-)

age are_you datascientist ... python3_ver country_responses
1 21 True ... 3.6 1063
2 30 False 3.6 2697
10 21 False 3.8 334
11 21 True 3.9 2697
13 30 True 3.7 135
54456 30 False 3.6 99
54457 21 False 3.6 502
54459 21 False 3.7 502
54460 30 True 3.7 298
54461 21 False 3.8 18

258

28.1. Aggregations while Keeping Rows

[13711 rows x 21 columns]

Below is a table with the strings that . transform accepts (you can find these in pd.core.groupby.generic.ba:
Those that return a series are marked with (S).

String Description

‘all’ Returns True for every value if every value is truthy.

‘any' Returns True for every value if any value is truthy.

"backfill' Backfills values for group.

"bfill’ Backfills values for group.

‘count’ Count of non-NA values for group.

‘cumcount’ Number of each item in group starting at 0 (S).

‘cummax ' Cumulative maximum for each group.

‘cummin’ Cumulative minimum for each group.

‘cumprod’ Cumulative product for each group.

‘cumsum’ Cumulative sum for each group.

'diff! Subtract the previous row from each row. Group
needs to be numeric.

ML Forward fill each group.

'fillna' Fill missing values for each group. Must specify
method ('ffill' or 'bfill') or value parameter.

"first' First row for each group.

"idxmax’ Index of maximum value for each group.

"idxmin' Index of minimum value for each group.

'last’ Last row for each group.

‘mad’ Mean absolute deviation for each group.

"max’ Maximum value for each group.

‘mean’ Mean value for each group.

'median’ Mean value for each group.

'min’ Minimum value for each group.

'nth' Nth value for each group. Must specify n parameter.

‘nunique’ Number of unique values for each group.

"pad’ Synonym for 'ffill'.

"pct_change' Percent change from current row and previous for
each group. Group needs to be numeric.

'prod' Product of each group.

'quantile’ Median of each group. Specify q (0-1) to change
quantile. Group needs to be numeric.

"rank' Rank of each group.

"sem' Unbiased standard error of each group.

'shift' Shift each group row down. Can specify periods
(default 1), or freq with date index.

'size’ Size of each group. Only works for a group with a
single column (not dataframe).

"skew' Skew of each group.

'std’ Standard deviation of each group.

"sum' Sum of each group. (Will add strings!)

Variance of each group.
Table 28.1: Groupby Transform String

259

28. More Aggregations

28.2 Filtering Parts of Groups

Our treatment of grouping operations has shown us how to aggregate by certain columns. In the
previous section, we explored the .transform method of a groupby object and saw that we can
calculate aggregations on groups but retain the original index. In this section, we will explore how
to filter parts of groups by an aggregation but return the result with the original index.

Using the cleaned up JetBrains data, let’s remove any row where the size of the country is less
than the median size of countries. It looks like the median value is 60.5:
>>> (jb2

.country live
.value _counts())

United States 2697
Germany 1137
India 1063
United Kingdom 699
France 674
Saudi Arabia 12
Sri Lanka 10
Morocco 9
Tunisia 7
Uzbekistan 4

Name: country live, Length: 76, dtype: inté4

>>> (jh2
.country live
.value _counts()
.median())

60.5

With our existing pandas knowledge, we could calculate the median size and then filter out
countries below those sizes:
>>> countries_to_remove = (jh2
.country _Tlive
.value_counts()

.1t (60.5)
.index)

Here is the result. Note that the index values are skipping, hinting that some filtering is going
on:

>>> (jh2
.query('~country live.isin(@countries _to remove)')
)

age are_you_datascientist ... vyears_of _coding python3 ver
1 21 True ... 3.0 3.6
2 30 False 3.0 3.6
10 21 False 1.0 3.8
11 21 True 3.0 3.9
13 30 True 3.0 3.7
54450 30 False ... 11.0 3.8
54456 30 False 6.0 3.6
54457 21 False 1.0 3.6
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7

260

28.3. Summary

[12635 rows x 20 columns]

The .filter method of the groupby object makes the previous few lines a single operation. The
.filter method accepts a function that takes the current group. If the function returns True (it must
return a scalar, not a series or dataframe), the rows are kept for the result:
>>> (jb2
.groupby ('country live')

.filter(lambda g: g.country live.size >= 60.5)

)

age are_you datascientist ... years of coding python3 ver
1 21 True ... 3.0 3.6
2 30 False 3.0 3.6
10 21 False 1.0 3.8
11 21 True 3.0 3.9
13 30 True 3.0 3.7
54450 30 False ... 11.0 3.8
54456 30 False 6.0 3.6
54457 21 False 1.0 3.6
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7

[12635 rows x 20 columns]

Method Description
g.filter(func, dropna=True, *args, Return the original dataframe but with filtered
**kwargs) groups removed. func is a predicate function that

accepts a group and returns True to keep values
from group. If dropna=False, groups that evaluate
to False are filled with NaN.
g.transform(func, *args, **kwargs) Return a dataframe with the original index. The
function will get passed a group and should return
dataframe with same dimensions as group.
Table 28.2: Chapter Groupby Methods

28.3 Summary

You often group and aggregate, but want to get the result in terms of the original index, not the
aggregated index. The .transform method will allow you to preserve the original index. If you
want to filter based on aggregated data but keep the original index (sans filtered rows), use the
.filter method on the groupby object.

28.4 Exercises
With a dataset of your choice:

1. Add anew column that is the sum of a numeric column that was grouped by a string column.

2. Filter out the rows that have less than 3 entries when grouped by a string column.

261

28. More Aggregations

Filter Operation

auto
make year cylinders drive city08
0 BMW 1984 4.00 nan 21
1 BMW 1984 4.00 nan 21
2 Chevrolet 1984 8.00 nan 13
3 Chevrolet 1984 8.00 nan 13
4 Ford 1084 4.00 pan 21
232 BMW 2020 4.00| Rear-Wheel 21
233 Chevrolet 2020 4.00 | Front-Whee 22
234 Chevrolet 2020 4.00| Front-Whee 30
235 Ford 2020 4.00 | Front-Whee 24
236 Ford 2020 4.00| Front-Whee 24
(auto (auto
.groupby(['year', 'make']) .groupby(['year', 'make'])
.city0s8 .city0s8
.mean() > 20) .filter(lambda g:g.mean() > 20)
) Removed because filter was false
1984 BMW True 0 21
1984 Chevrolet False 1 21
1984 Ford True 4 21
1985 BMW False 5 21
1983 Chevrolet false 16 21
2019 Ford False 232 21
2019 Tesla True 233 22
2020 BMW True 234 30
2020 Chevrolet True 235 24
2020 Ford True 236 24

Figure 28.2: The .filter method allows us to filter in terms of the original data based on aggregations on
groups.

262

Chapter 29

Cross-tabulation Deep Dive

We have seen that you can emulate some of the groupby and pivot table actions with the crosstab
function. (In fact, if you look at the source code for crosstab, you will see that it calls .pivot_table
under the covers. And .pivot_table calls .groupby under the covers!)

Let’s explore some more of the cross-tabulation functionality using the Presidential data.

29.1 Cross-tabulation Summaries

Using the JetBrains dataset, let us summarize the count of respondents by country and age:

>>> pd.crosstab(index=jb2.country live, columns=jb2.age)

age 18 21 30 40 50 60
country_live

Algeria 2 7 5 3 0 1
Argentina 1 38 44 20 5 1
Armenia 1 13 3 0 0 0
Australia 4 58 110 63 30 9
Austria 1 31 62 22 12 0
United States 40 753 1042 478 264 120
Uruguay 0 6 13 1 0 0
Uzbekistan 0 4 0 0 0 0
Venezuela 1 10 4 5 2 0
Viet Nam 1 26 4 1 0 1

[76 rows x 6 columns]

29.2 Adding Margins

Both .pivot_table and crosstab have a margins parameter that will put in a column and row at the
right and bottom respectively that summarize the data:
>>> pd.crosstab(index=jb2.country live, columns=jb2.age,

. margins=True)
age 18 21 30 40 50 60 Al1l

country live

Algeria 2 7 5 3 0 1 18
Argentina 1 38 44 20 5 1 109
Armenia 1 13 3 0 0 0 17
Australia 4 58 110 63 30 9 274
Austria 1 31 62 22 12 0 128

263

29. Cross-tabulation Deep Dive

Uruguay 6 13

0 1 0 0
Uzbekistan 0 4 0 0 0 0 4
Venezuela 1 10 4 5 2 0 22
Viet Nam 1 26 4 1 0 1 33
A1l 315 5270 5054 2028 822 222 13711

[77 rows x 7 columns]

29.3 Normalizing Results

The crosstab function has another parameter, normalize, that will calculate the percent of each cell:

>>> pd.crosstab(index=jb2.country live, columns=jb2.age,
.. normalize=True)
age 18 21 ... 50 60

country_live

Algeria 0.000146 0.000511 0.000060 0.600073
Argentina 0.000073 0.002771 0.000365 0.0600073
Armenia 0.000073 0.000948 0.000060 0.000000
Australia 0.000292 0.004230 0.002188 0.000656
Austria 0.000073 0.002261 0.000875 0.000000
United States 0.002917 0.054919 0.019255 0.008752
Uruguay 0.000000 0.000438 0.000060 0.000000
Uzbekistan 0.000000 0.000292 0.000060 0.000000
Venezuela 0.000073 0.0008729 0.000146 0.000000
Viet Nam 0.000073 0.001896 0.000060 0.600073

[76 rows x 6 columns]

You can also normalize down the columns or across the rows. (This seems backwards compared
to most axis operations to me as specifying 'colunns' normally means to apply the operation across
the columns axis.) Here we normalize each column to sum to one:
>>> pd.crosstab(index=jb2.country live, columns=jb2.age,

... normalize='columns"')
age 18 21 ... 50 60

country live

Algeria 0.006349 0.001328 0.000060 0.004505
Argentina 0.003175 0.007211 0.006083 0.004505
Armenia 0.003175 0.002467 0.000060 0.000000
Australia 0.012698 0.0811006 0.036496 0.040541
Austria 0.003175 0.005882 0.014599 0.0600000
United States 0.126984 0.142884 0.321168 0.540541
Uruguay 0.000000 0.001139 0.000060 0.000000
Uzbekistan 0.000000 0.000759 0.000000 0.0000800
Venezuela 0.003175 0.001898 0.002433 0.000000
Viet Nam 0.003175 0.004934 0.000060 0.004505

[76 rows x 6 columns]

If you normalize by 'index', every row will sum up to 1.0:

>>> pd.crosstab(index=jb2.country live, columns=jb2.age,
.. normalize="index ")
age 18 21 ... 50 60

264

29.4. Hierarchical Columns with Cross Tabulations

country live

Algeria 6.1711111 0.388889 0.000008 0.055556
Argentina 0.009174 0.348624 0.045872 0.009174
Armenia 0.058824 0.764706 0.000000 0.000000
Australia 0.014599 0.211679 0.109483 0.032847
Austria 0.007812 0.242188 0.0937506 0.000000
United States 0.014831 0.279199 0.097887 0.044494
Uruguay 0.006000 0.300000 0.000000 0.000000
Uzbekistan 0.006000 1.000000 0.000000 0.000000
Venezuela 0.045455 0.454545 0.090963 0.000000
Viet Nam 0.036303 0.787879 0.000008 0.030303

[76 rows x 6 columns]

29.4 Hierarchical Columns with Cross Tabulations

In addition, we can create hierarchical indices and columns with crosstab. Let’s look at the
breakdown of country and age by where people use Python and Python version, and then focus
on the United States:

>>> (pd.crosstab(index=[jb2.country live, jb2.agel],

columns=[jb2.use python most, jb2.python3 version most])
.loc[['United States']]

)

use_python_most Computer graphics ... Web development

python3 version_most Python 3 5 or lower ... Python 39

country_live age

United States 18 0 0
21 0 4
30 0 14
40 0 8
50 0 2
60 0 1

[6 rows x 84 columns]

Let’s dive in a little more and just look at data analysis and web development:

>>> (pd.crosstab(index=[jb2.country live, jb2.agel],
columns=[jb2.use_python most, jb2.python3 version most])
.loc[['United States'], ['Data analysis', 'Web development']]

)
use_python_most Data analysis ... Web development
python3_version_most Python 3 _5 or lower ... Python 3_9

country live age

United States 18
21
30
40
50
60

oMM OO wWw -,
—_
—_ N0 B~ OO

[6 rows x 10 columns]

265

29. Cross-tabulation Deep Dive

(pd.crosstab([jb2.country live, jb2.age], [jb2.use python most, jb2.python3 version most])
.loc[['United States'], ['Data analysis', 'Web development']]
.style.background gradient(cmap='viridis', axis=None)

use_python_most Data analysis Web development
python3_version_most 3.5 3.6 37 38 39 35 36 37 38 39

country_live age

18.0

21.0

30.0
United States

40.0

50.0

60.0

Figure 29.1: Jupyter showing a view of dataframe with a heatmap. This pulls attention to versions and ages
that are most common.

29.5 Heatmaps

Let me show you one more trick. Remember how I said humans aren’t optimized for pulling out
the parts that stand out? I like to add some visualizations to make this pop. I'm going to color
the background (this works great in Jupyter, if I needed to generate a plot, I would use Seaborn’s
heatmap function). I will use the .style attribute to change the background gradient:
(pd.crosstab(index=[jb2.country live, jb2.agel,

columns=[jb2.use_python _most, jh2.python3 version most])

.loc[['United States'], ['Data analysis', 'Web development']]
.style.background gradient(cmap="viridis', axis=None)

)

This makes it clear that in this data Python 3.8 is the most popular, as is age 30.

Method Description

pd.crosstab(index, columns, values=None, Create a cross tabulation (counts by default) from
rownames=None, colnames=None, index (series or list of series) and columns (series or
aggfunc=None, margins=False, list of series). Can specify a column (series) to
margins_name='A11', dropna=True, aggregate values along with a function, aggfunc.
normalize=False) Using margins=True will add subtotals. Using

dropna=False will keep columns that have no
values. Can normalize over 'all' values, the rows
("index'), or the 'columns’.

.style.background gradient(cmap="'PuBu', Color a dataframe in Jupyter with Matplotlib

low=0, high=0, axis=8, subset=None, colormap (cmap). Specify the ends of color map
text_color_threshold=0.408, vmin=None, with vmin and cmax. If axis=None apply to whole
vmax=None, gmap=None) dataframe.

Table 29.1: Chapter Methods

3866 Summary

A V. VA D B E R N, [k ISR PSS T B F [NI Y S S i P o T S I . T

Chapter 30
Melting, Transposing, and Stacking Data

We have shown a lot of ways to manipulate a dataframe. But we are not done yet. In this chapter,
we will show some of the more complicated operations that you can do to a dataframe to bend the
data to your will. You probably will not use these operations very often, but you will be grateful
they are around when you need them.

30.1 Melting Data

Another transformation we can do to data is “melt” it. Before looking at the method to melt data,
let’s discuss the structure of data. Two ways to organize the same data are “wide” (also called
stacked or record form) and “long” (sometimes called tidy form) data. (Note that this is different
from ”big data”, which refers to the amount of data.)

An OLAP database is an analytical database optimized for reporting. In OLAP terms, there is a
notion of a fact and a dimension. A factis a value that is measured and reported on, and a dimension
is a value that describes the conditions of the fact. There are often multiple dimensions for a fact. In
a sales scenario, typical facts would be the number of sales of an item and the cost. The dimensions
might include the store where the item was sold, the date, and the customer.

The dimensions can then be sliced to explore the data. We might want to view sales by store. A
dimension may be hierarchical, a store could have a region, zip code, or state, and we could view
sales by any of those dimensions.

Here is data that tracks students’ ages and scores. The test columns are fact columns and the
other columns are dimensions:

name age testl test2 teacher

Adam 15 95 80 Ashby

Bob 16 81 82 Ashby
Dave 16 89 84 Jones
Fred 15 88 Jones

The scores data is in a wide format. In contrast to a long, where each row contains a single fact
(with perhaps other variables describing the dimensions). If we consider test scores to be a fact,
this wide-format has more than one fact in a row. Hence it is wide.

Often, tools require that data be stored in a long-format, and only have one fact per row. This
format is denormalized and repeats many of the dimensions but may make analysis easier.

One long version of our scores looks like this (note that we dropped teacher information):

267

30. Melting, Transposing, and Stacking Data

Melting Data
scores
name age teacher
0 Adam 15
1 Bob 16
2 Suzy 16
3 Fred 15

pd.melt(scores, id vars=['name', 'age'],
value vars=['test1', 'test2'])

name age variable value
0 Adam 15
1 Bob 16
2 Suzy 16
3 Fred 15
4 Adam 15
5 Bob 16
6 Suzy 16
7 Fred 15

Figure 30.1: Melting data with pandas. Melting allows you to stack columns on top of each other.

>>> scores =

name age test score
Adam 15 testl 95
Bob 16 testl 81
Dave 16 testl 89

Fred 15 testl NaN
Adam 15 test2 80
Bob 16 test2 82
Dave 16 test2 84
Fred 15 test2 88

Let’s show how to convert wide data to long data. We will start by creating a dataframe with
scores:

pd.DataFrame ({

"name ':['Adam', 'Bob', 'Dave', 'Fred'],
'age': [15, 16, 16, 15],

"test1': [95, 81, 89, Nonel],

'test2': [80, 82, 84, 88],

"teacher': ['Ashby', 'Ashby', 'Jones',

>>> scores

name age testl test2 teacher
Adam 15 95.0 80 Ashby

Bob 16 81.0 82 Ashby
Dave 16 89.0 84 Jones

'Jones ']})

30.1. Melting Data

3 Fred 15 NaN 88 Jones

Right now, the score for each test is in its own column. If we wanted to calculate the average
of all of the tests, it would require some work to pull out all of the test score columns, stack them,
and calculate the mean. Let’s melt the data and put it into long form. Below, we keep name and
age as dimensions, and pull out the test scores as facts:

>>> scores.melt(id_vars=['name', 'age'],
. value vars=['test1', 'test2'])
name age variable value
Adanm 15 testl 95.0
Bob 16 testl 81.0
Dave 16 test1 89.0
Fred 15 test1 NaN
Adam 15 test?2 80.0
Bob 16 test?2 82.0
Dave 16 test?2 84.0
Fred 15 test?2 88.0

~NOoONOT DN,

Using techniques that we have learned we can accomplish this by building up a chain. But the
.melt method is a nice convenience method. Here is the hand-rolled non-melt version:

>>> (scores

.groupby (['name', 'age'])

.apply(lambda g: pd.concat([
g[['test1']].rename(columns={"test1':"'val'}).assign(var="test1"'),
g[['test2']].rename(columns={"test2':'val'}).assign(var="test2"')]))

.reset_index()

.drop(columns="1level 2")

)

name age val var
0 Adam 15 95.0 test1
1 Adam 15 80.0 test2
2 Bob 16 81.0 test1
3 Bob 16 82.0 test2
4 Dave 16 89.0 testl
5 Dave 16 84.0 test?2
6 Fred 15 NaN test1
7 Fred 15 88.0 test2

As you can see, the melt version is much easier to create.

If we want to change the description of the fact column to a more descriptive name, pass that
as the var_name parameter. We can change the name of the value of the column (it defaults to value)
by providing a value_name parameter. Here we change the description to fest and the value to score:

>>> scores.melt(id_vars=['name', 'age'],
value vars=['test1', 'test2'],
var_name='test', value name='score')
name age test score
Adam 15 testl 95.0
Bob 16 testl 81.0
Dave 16 testl 89.0
Fred 15 testl NaN
Adam 15 test? 80.0
Bob 16 test? 82.0
Dave 16 test?2 84.0
Fred 15 test?2 88.0

~N OO AN o

269

30. Melting, Transposing, and Stacking Data

If we want to preserve the teacher information, we would need to include it in the id_vars
parameter:

>>> scores.melt(id _vars=['name', 'age', 'teacher'],
value vars=['test1', 'test2'],
var_name='test', value _name='score')
name age teacher test score
Adam 15 Ashby testl 95.0
Bob 16 Ashby test1 81.0
Dave 16 Jones testi 89.0
Fred 15 Jones testi NaN
Adam 15 Ashby test?2 80.0
Bob 16 Ashby test?2 82.0
Dave 16 Jones test?2 84.0
Fred 15 Jones test? 88.0

~NOoON OB o

Note
Long data is also referred to as tidy data. See the Tidy Data paper'* by Hadley Wickham.

30.2 Un-melting Data

Using a pivot table, we can go from long format to wide format. Here is our melted data from the
previous section:

>>> melted = scores.melt(id vars=['name', 'age', 'teacher'],
value vars=['test1', 'test2'],
cen var_name='test', value _name='score')
>>> melted
name age teacher test score
Adam 15 Ashby test1 95.0
Bob 16 Ashby testl 81.0
Dave 16 Jones testl 89.0
Fred 15 Jones testl NaN
Adam 15 Ashby test?2 80.0
Bob 16 Ashby test?2 82.0
Dave 16 Jones test?2 84.0
Fred 15 Jones test?2 88.0

~Noo A~ w2 o

It is a little more involved going in the reverse direction because we will put the id variables
that we kept from the original data in a hierarchical index. I generally flatten hierarchical indices
with the .reset_index method. You can use .pivot_table or .groupby to do this:

>>> (melted
.pivot_table(index=['name','age', 'teacher'],
columns="'test', values='score')
... .reset index())
test name age teacher testl test?

0 Adam 15 Ashby 95.0 80.0
1 Bob 16 Ashby 81.0 82.0
2 Dave 16 Jones 89.0 84.0
3 Fred 15 Jones NaN 88.0

14http:/ /vita.had.co.nz/papers/tidy-data.html

270

http://vita.had.co.nz/papers/tidy-data.html

30.3. Transposing Data

Undoing Melting

melted
name age variable value

0 Adam 15
1 Bob 16
2 Suzy 16
3 Fred 15
4 Adam 15
5 Bob 16
6 Suzy 16
7 Fred 15

(melted

.pivot_table(index=['name', 'age'l],
columns='variable', values='value')
.reset_index()

name age
0 Adam

1 Bob

2 Fred

3 Suzy

Figure 30.2: Unmelting data with pandas. By pivoting the data, you can specify the label column (columns)
for the stacked columns (values).

>>> (melted

... .groupby(['name"',
.score
.mean ()
.unstack ()
.reset_index ()

test

w D =

30.3

age', 'teacher', 'test'])

name age teacher testl test2
Adam 15 Ashby 95.0 80.0
Bob 16 Ashby 81.0 82.0
Dave 16 Jones 89.0 84.0
Fred 15 Jones NaN 88.0

Transposing Data

We have been exploring reshaping data. We have already seen and used a common method to
reshape data, the .transpose method or the .T property. Remember, this flips rows and columns.
I find that I use transposition mostly in two places:

* Viewing more data in Jupyter

271

30. Melting, Transposing, and Stacking Data

In [189]: jb2
age are_you_ datascientist company size country_ live employment status first_learn_about main_ide how_often_use main_ide ide_main is_python_main job_team mai
Fully employed by a .
1 210 True 5000.0 India company / School / University Daily VS Code Yes Wcr:ewgn: B;
organization
United Fully employed by a Work on your Bc
2 300 False 5000.0 5 company / Friend / Colleague Daily Vim Yes own project(s)
tates i . a
organization independently
Fully employed by a - .
10 210 False 51.0 Qi company / School / University Daily Tzl Yes UlEnse (5
country o IDEA team a
organization
. Fully employed by a . . . PyCharm .
11 210 True 51.0 United company / On\meIeammgp\atfnrrp_, Daily Community Yes Workina Be
States o Online course o team a
organization Edition
Fully employed by a o
13 300 True 5000.0 Belgium company / Social network Daily VS Code Yes Wcr?ewgn: Bac
organization
Fully employed by a PyCharm Work on your Be
54456 30.0 False 1001.0 Turkey company / Friend / Colleague Daily Community Yes own project(s) 4
organization Edition independently
Russian Fully employed by a Work on your Be
54457 210 False 2.0 . company / School / University Daily Vim Yes own project(s)
Federation o : a
organization independently
N Self-employed (a PyCharm .
54459 21.0 False 1.0 RUSS.‘SH person earning Friend / Colleague Daily Professional Yes Warisire
Federation . . . team a
income directl... Edition
Fully employed by a Work on your Be
54460 300 True 51.0 Spain company / Search engines Daily Other Yes own project(s) a
organization independently
Fully employed by a 0 p q o
54461 210 False 110 Algsria company,/ Cniine learning platform / Daily V5Code Yes Ui [
m Online course team
organization
13711 rows x 19 columns
»

Figure 30.3: Jupyter showing default view of dataframe. We have ten rows but need to scroll to see all of the
data.

* Swapping axis for plotting

Transposition often works for viewing more data because pandas uses numeric index values by
default. When the numeric index goes into the column, it takes up less horizontal space, and you
can see more data without having to scroll around.

I have some thoughts on viewing data. Often when I'm teaching, a student will ask how to turn
off the default behavior of pandas in Jupyter to only show a limited number of rows and columns.
(You can change pd.options.display.max_columns and pd.options.display.min_rows to modify these if
you really want to.) I generally try to dissuade them from changing these settings.

However, if you change these settings to view more data and find yourself scrolling through a
million rows of data, your spidey sense should be going off telling you that you are doing things
the wrong way. Humans are not made for looking for interesting data by scrolling through rows
of data. It is better to use a computer (which is optimized to search through data) to find rows
you might be interested in. My two favorite methods of leveraging a computer to search for us are
visualization and filtering the data.

On that note, if you use the .transpose method to view more data on your screen, you might
not want to transpose your whole data set. Remember that pandas stores and optimizes data by
column types. If you make a row that contains different data types (strings, dates, numbers) into
a column that can be a slow and memory-loving operation. It is better to pull off the head, tail, or
take a sample of the data and then transpose it.

When we explored line plots in the plotting section, we showed an example of transposing the
data. We had a presidential data set with the names of the president in the index and ratings for

272

30.4. Stacking & Unstacking

In [190 (jb2
.head(10)
)
S
)
out[19e]: 1 2 10 11 13 14 15 17 22 25
age 210 300 210 210 300 300 50.0 30.0 400 50.0
are_you_datascientist True False False True True True False True False True
company_size 5000.0 5000.0 51.0 51.0 5000.0 501.0 1001.0 20 51.0 110
country_live India United States Othercountry United States Belgium Ecuador Germany Chile Australia United States
Fully Fully Fully Fully Fully Fully
employment status employed by a EU‘Q’;THDI(;::&‘} employedbya employedby employed by EU ‘?’;Tnplg}:e“j/ employed by a Zulg(iﬁp‘:zei employed by a iu‘gfce;nplgfi
ployi = company / ¥ pany company / acompany / acompany/ Y pany company / Y pany company / Y FEn

R organization R R R organization R organization o organization
organization organization organization organization organization organization

Online

School / Friend / School / learning Social Friend / Technical
first_learn_about_main_ide " . . N N ‘ Other Social network review/ Searchengines
University Colleague University platform/ network Colleague A
N Forum/ Blog
Online course
how_often_use_main_ide Daily Daily Daily Daily Daily Weekly Daily Daily Daily Daily
PyCharm PyCharm
ide_main VS Code Vim IntelliJ IDEA Community VS Code VS Code Vim VS Code VS Code Professional
Edition Edition
No, | use No, | use
is_python_main Yes Yes Yes Yes Yes Yes ABEESE Yes ABTDESE Yes
secondary secondary
language language
. Workina Work onyour Workina Workina Workina Work on your Workina Wor’korj your Workina Work on your
job_team own project(s) own project(s) own project(s) own praject(s)
team . team team team team . team
independently independently independently independently
5 Both for work Bothforwork Bothforwork Bothforwork Both for work Bothforwork Bothfor work Both for work
main_purposes For work For work
and personal and personal and personal and personal and personal and personal and personal and personal
No, it hasall B No, it has all No, it has all No, it has all N B No, it has all
missing_features_main_ide the features| No, It has all the thefeatures| thefeatures| thefeaturesl No,it hasall the Yes- Please‘ No, it \'!as all the thefeatures| Yes - Please list:
features | need features | need list: features|need
need need need need need
nps_main_ide 8.0 10.0 10.0 9.0 100 10.0 5.0 10.0 10.0 2.0
python_years 3.0 3.0 1.0 3.0 6.0 3.0 1.0 10 6.0 110
python3_version_most 36 36 38 3.9 3.7 38 3.6 38 3.7 3.8
Yes, lworkon Yes,lworkon Yes,Iworkon Yes,Iworkon Yes,|workon ’ Yes, | workon Yes, lworkon Yes, lworkon
N " " Yes, | workon Yes, | work on N N
| ect one main and onemainand one mainand many many diff t many diff t onemain and one main and
several_projects several side several side several side different different ANy GlTteren different TNy dinieren several side several side
. . o L L projects . projects . .
projects projects projects projects projects projects projects projects
team_size 2 5 2 2 2 5 2 [o] 2 2
DevOps / Programming of
use python most Software System Web Dataanalysis Data analysi web parsers/ Web Machine Software Data analysis
Y - prototyping administration/ development ¥ v scrapers/ development learning prototyping v
Writing autom... crawlers
years_of coding 3.0 3.0 1.0 3.0 3.0 3.0 11.0 1.0 11.0 11.0

Figure 30.4: Jupyter showing a transposed view of dataframe. Notice that we see ten complete samples of
data showing on the screen without scrolling.

various skills in the columns. When we did a line plot of this data, each characteristic was its own
line. Instead, we wanted each president to be its own line, so we transposed the data.

30.4 Stacking & Unstacking

I have used the .unstack method previously but not discussed it. It (along with its complement,
.stack) is a powerful method to reshape your data.

At a high level, .unstack moves an index level into the columns. Usually we use this operation
on multi-index data, moving one of the indices into the columns (creating hierarchical columns).
The .stack method does the reverse, moving a multi-level column into the index. .. index:

**.unstack®

unstacking

Let’s look at an example using the JetBrains data:

>>> jb2
age are_you datascientist ... years of coding python3 ver

273

30. Melting, Transposing, and Stacking Data

1 21 True 3.0 3.6
2 30 False 3.0 3.6
10 21 False 1.0 3.8
11 21 True 3.0 3.9
13 30 True 3.0 3.7
54456 30 False 6.0 3.6
54457 21 False 1.0 3.6
54459 21 False 6.0 3.7
54460 30 True 3.0 3.7
54461 21 False 1.0 3.8

[13711 rows x 20 columns]

We will create a hierarchical or multi-index by grouping with multiple columns. Let’s take the
size of responses to are_you_datascientist column by country:

>>> (jb2
.groupby (['country live', 'are_you datascientist'])
.size()
)
country live are_you_datascientist
Algeria False 12
True 5
Other 1
Argentina False 89
True 16
Venezuela True 4
Other 2
Viet Nam False 16
True 4
Other 3

Length: 228, dtype: inté64

Notice that the result is a series with a multi-index. This result is useful but a little hard to
scan through. It would be easier if we had countries in the index and each of the responses to
are_you_datascientist as their own column. We can do that by unstacking the inner index into a
column (note that you could also do this operation with pd.crosstab):

>>> (jb2
.groupby (['country live', 'are _you datascientist'])
.size()
.unstack ()
)

are_you _datascientist False True Other
country_live

Algeria 12 5 1
Argentina 89 16 4
Armenia 15 2 0
Australia 210 50 14
Austria 93 32 3
United States 2008 589 100
Uruguay 10 9 1
Uzbekistan 3 1 0
Venezuela 16 4 2
Viet Nam 16 14 3

274

30.5. Stacking

[76 rows x 3 columns]

By default, .unstack moves the inner index up to the columns. Because this operation was
performed on a series, it is changed to a dataframe. (If we perform .unstack on a dataframe, we
will get a dataframe with nested columns.)

If we wanted to pull up the country index (which is the outer index), we could specify it by name
or by position. The position is 0 for the outer index, country_live, and 1 for are_you_datascientist:

>>> (jb2

.groupby (['country live', 'are you datascientist'])

.size()

.unstack (0)

)

country_live Algeria Argentina ... Venezuela Viet Nam
are_you datascientist .
False 12 89 ... 16 16
True 5 16 ... 4 14
Other 1 4 ... 2 3

[3 rows x 76 columns]

I would prefer to use the index name (rather than the index position) in this case as it is easier
to understand (and one less thing you need to memorize):

>>> (jb2

.groupby (['country live', 'are_you datascientist'])

.size()

.unstack ('country live')

)

country _Tlive Algeria Argentina ... Venezuela Viet Nam
are_you_datascientist .
False 12 89 ... 16 16
True 5 16 ... 4 14
Other 1 4 .. 2 3

[3 rows x 76 columns]

30.5 Stacking

Let’s look at stacking. Previously we saw that we could specify multiple aggregation functions
with the .pivot_table method. The result is a dataframe with hierarchical columns:

>>> (jb2
.pivot_table(index="'country live',
aggfunc={'age': ['min', 'max'],
'company _size': ['min', 'max']})
)
age company_size
max min max min
country_Tlive
Algeria 60 18 5000 1
Argentina 60 18 5000 1
Armenia 306 18 5000 1
Australia 60 18 5000 1
Austria 50 18 5000 1

275

30. Melting, Transposing, and Stacking Data

Stacking & Unstacking Data

scores
name age test1 test2 teacher
0 Adam 15 95.00 80| Ashby
1 Bob 16 81.00 82| Ashby
2 Suzy 16 89.00 94| Jones
3 Fred 15 nan 88| Jones
gh = (scores
.groupby (['teacher', 'age'])
.min()
name test1 test2
Adam 95.00 80
Bob 81.00 82
Fred nan 88
Suzy 89.00 94
teachers = gh.unstack() \
\ gh = teachers.stack()
name name test1 test1 test2 test2
Ashby Adam Bob 95.00 81.00 80 82
Jones Fred Suzy nan 89.00 88 94

Figure 30.5: Stacking and unstacking data with pandas. Stacking puts column labels into the index.
Unstacking moves index labels into columns.

United States 60 18 5000 1
Uruguay 40 21 5000 2
Uzbekistan 21 21 5000 1
Venezuela 50 18 5000 1
Viet Nam 60 18 5000 1

[76 rows x 4 columns]

In a prior example, we saw that we could unstack the index by the name of the index (the name
of the column before it was put in the index) or by the position. In this example we want to stack
one of the hierarchical columns into the index. The columns do not have a name, so we will have
to use the position. The outermost column level is 0. Stacking by this level will move age and
company_size into the index:
>>> (ij

.pivot _table(index='country live',
aggfunc={'age': ['min', 'max'],
'company _size': ['min', 'max']})

276

30.5. Stacking

.stack (0)
)

country_live

Algeria age
company_size

Argentina age
company_size

Armenia age

Uzbekistan company_size

Venezuela age
company_size
Viet Nam age

company_size

[152 rows x 2 columns]

max m

60
5000
60
5000
30
5000
50
5000

60
5000

in

18
1
18
1
18

If we want to move the inner columns, max and min, into the index this is the default behavior.

Alternatively, we can specify level 1 as an argument for .stack:

>>> (jb2

.pivot_table(index='country live',
aggfunc={"'age': ['min',
'company_size':

.stack (1)
)

age company_size

country_live

Algeria max 60
min 18
Argentina max 60
min 18
Armenia max 30

Uzbekistan min 21

Venezuela max 50
min 18
Viet Nam max 60
min 18

[152 rows x 2 columns]

5000
1
5000
1
5000

5000

5000

Finally, if you want to change the order of the levels in a hierarchical index or columns, you can

use the .swaplevel method:
>>> (jh2

.pivot_table(index='country live',
aggfunc={'age': ['min’',
'company_size':

.stack (1)
.swaplevel()
)

age company_size

country_live

max Algeria 60
min Algeria 18
max Argentina 60
min Argentina 18

5000
1
5000
1

277

30. Melting, Transposing, and Stacking Data

max Armenia 30 5000
min Uzbekistan 21 1
max Venezuela 50 5000
min Venezuela 18 1
max Viet Nam 60 5000
min Viet Nam 18 1

[152 rows x 2 columns]

30.6 Flattening Hierarchical Indexes and Columns

When you start applying grouping operations, you can end up with a hierarchical index or
columns. In practice, I find these nested structures difficult to deal with and often want to remove
(or flatten them).

Let’s start by discussing removing the hierarchical index as that is simple. We use the
.reset_index method. Here is a dataframe with a hierarchical index:

>>> (jb2
.groupby (['country live', 'age'l])
.mean ()
)
company _size ... python3_ver
country live age
Algeria 18 2.0 3.650000
21 725.428571 3.757143
30 1.6 3.700000
40 1674.0 ... 3.766667
50 <NA> ... NaN
Viet Nam 21 348.346154 ... 3.711538
30 266.25 ... 3.7560000
40 51.0 ... 3.800000
50 <NA> ... NaN
60 1.0 ... 3.900000

[456 rows x 6 columns]

We can use .reset_index to push each index level into a column:

>>> (jh2
.groupby (['country live', 'age'])
.mean ()
.reset_index()
)
country live age ... years of coding python3 ver
0 Algeria 18 ... 6.000000 3.650000
1 Algeria 21 ... 2.428571 3.757143
2 Algeria 30 ... 3.800000 3.700000
3 Algeria 40 ... 6.666667 3.766667
4 Algeria 50 ... NaN NaN
451 Viet Nam 21 ... 1.923077 3.711538
452 Viet Nam 30 ... 3.500000 3.750000
453 Viet Nam 40 ... 6.000000 3.800000
454 Viet Nam 50 ... NaN NaN
455 Viet Nam 60 ... 1.000000 3.900000

278

30.6. Flattening Hierarchical Indexes and Columns

[456 rows x 8 columns]

Alternatively, when using .groupby, you can set the as_index parameter to False and the result
not insert the grouping columns in the index, they will stay as columns:

>>> (jh2
.groupby (['country live', 'age'], as_index=False)
.mean ()
)
country live age ... years of coding python3 ver
0 Algeria 18 ... 6.000000 3.650000
1 Algeria 21 ... 2.428571 3.757143
2 Algeria 30 ... 3.800000 3.700000
3 Algeria 40 ... 6.666667 3.766667
4 Algeria 50 ... NaN NaN
451 Viet Nam 21 ... 1.923077 3.711538
452 Viet Nam 30 ... 3.500000 3.756000
453 Viet Nam 40 ... 6.000000 3.800000
454 Viet Nam 50 ... NaN NaN
455 Viet Nam 60 ... 1.000000 3.9060000

[456 rows x 8 columns]

Now let’s explore flattening hierarchical columns. Sadly, the .reset_index method won’t work
for the column names. We don’t want to push the column names into a row, generally, but want
to combine them into a single level of column names. And there is no convenience method to do
that in pandas.

Here is an example of data with a hierarchical column. For every country we have the mean
values for each numeric column broken down by age:

>>> (jb2

.groupby (['country live', 'age'])

.mean ()

.unstack ()

)
company_size ... python3 ver

age 18 21 ... 50 60
country_live .
Algeria 2.0 725.428571 ... NaN 3.900000
Argentina 51.0 459.789474 ... 3.720000 3.800000
Armenia 11.06 1015.461538 ... NaN NaN
Australia 4.25 1055.689655 ... 3.756667 3.777778
Austria 11.0 785.258065 ... 3.700000 NaN
United States 707.4 1640.298805 ... 3.742045 3.742500
Uruguay <NA> 31.0 ... NaN NaN
Uzbekistan <NA> 1265.75 ... NaN NaN
Venezuela 2.0 25.1 ... 3.800000 NaN
Viet Nam 51.0 348.346154 ... NaN 3.900000

[76 rows x 36 columns]

In addition to the lack of a convenience method to flatten columns being a gaping hole in the
pandas API, to add insult to injury you have to mutate the dataframe to update the columns.
Remember, mutation generally throws a wrench in our chaining operations.

279

30. Melting, Transposing, and Stacking Data

Flattening Grouping Data with Multiple Aggregations

auto
make year cylinders drive
1 Ferrari 1985 12.00| Rear-Wheel
2 Dodge 1985 4.00| Front-Whee
3 Dodge 1985 8.00 | Rear-Wheel
4 Subaru 1993 4.00| 4-Wheel or
41139 Subaru 1993 4.00| Front-Whee
41140 Subaru 1993 4.00| Front-Whee
41141 Subaru 1993 4.00| 4-Wheel or
41142 Subaru 1993 4.00| 4-Wheel or
41143 Subaru 1993 4.00| 4-Wheel or

def flatten(df):
cols = [' ".join(cs) for cs in df .columns.to flat_index()]
df _.columns = cols
return df
(auto
.groupby('make")
.agg(['min', 'max'])

.pipe(flatten))

year_min year_max | cylinders_min | cylinders_max

Acura 1986 2020 4.00 6.00
Audi 1984 2020 4.00 12.00
BMW 1984 2020 2.00 12.00
BYD 2012 2019 nan nan
VPG 2011 2013 8.00 8.00
Vector 1992 1997 8.00 12.00
Volvo 1984 2019 4.00 8.00
Yugo 1986 1990 4.00 4.00
smart 2008 2019 3.00 3.00

Figure 30.6: Grouping and then flattening hierarchical columns.

30.6. Flattening Hierarchical Indexes and Columns

To get around this, I make a function that will flatten columns. The function joins each level of
columns with an underscore. Then I combine that function with the .pipe method. This lets me do
a column flattening operation in a chain:
>>> def flatten cols(df):

cols = [' '.join(map(str, vals))
for vals in df.columns.to_flat_index()]
df .columns = cols

return df
>>> (jb2
... .groupby(['country live', 'age'])
.mean ()
.unstack ()
.. .pipe(flatten_cols)
)
company_size_18 ... python3_ver_60
country_live ce
Algeria 2.0 ... 3.900000
Argentina 51.0 ... 3.800000
Armenia 11.0 ... NaN
Australia 4.25 ... 3.777778
Austria 1.8 ... NaN
United States 707.4 ... 3.742500
Uruguay <NA> ... NaN
Uzbekistan <NA> ... NaN
Venezuela 2.0 ... NaN
Viet Nam 51.0 ... 3.900000

[76 rows x 36 columns]

Method Description

.melt(id_vars=None, value_vars=None, Return an unpivoted dataframe. With each column
var_name=None, value name='value', in value_vars stack on top of each other. Keep the
col_level=None, ignore_index=True) id_vars columns.

g.transform(func, *args, **kwargs) Return a dataframe with original index. The function

will get passed a group and should return a
dataframe with same dimensions as group.

pd.options.display.max_columns Property to set to configure pandas to show at most
this amount of columns.

pd.options.display.min_rows Property to set to configure pandas to show at most
this amount of row.

.stack(level=-1, dropna=True) Push a column level into an index level. Can specify
the column level (-1 is innermost).

.unstack(level=-1, dropna=True) Push an index level into a column level. Can specify
an index level (-1 is innermost).

.swaplevel(i=-2, j=-1, axis=0) Swap the levels of multi-indexed object (0 is

outermost, -1 (or length of multi-index) is
innermost). Can specify the name for i and j.

281

30. Melting, Transposing, and Stacking Data

.reset_index(level=None, drop=False, Return a dataframe with new a index (or new level).
col_level=0, col fill='") To remove a level, specify that with level (by

position or name). Position 0 is the outermost level,
and it goes up. Alternatively, -1 is the innermost
level. Index values are moved to columns or
dropped if drop=True. col_level determines where
index label goes with multiple column levels, other
levels will get value of col_fill.

.pipe(func, *args, **kwargs) Apply a function to a dataframe. Return the result of
function.

Table 30.1: Chapter Methods

30.7 Summary

In this chapter, we showed how to melt and un-melt data. If you use the Seaborn library for
plotting, you might need to transform your data so that you can plot with this library. We also
explored stacking and unstacking data. Finally, we showed how to remove nested columns and
indexes.

30.8 Exercises
With a dataset of your choice:

1. Melt two numeric columns values into a single column. Add a new column to indicate what
the values mean.

2. Un-melt the above.
3. Group by two columns, take the mean and unstack the result.

4. Group by two columns, take the mean, and unstack the result, and flatten the columns.

282

Chapter 31

Working with Time Series

In this chapter, we will explore how to manipulate and work with time-series data. One thing to
note, when we say “time-series”, we are not talking about the pandas Series object, but rather data
that has a date component. Often we will have that date component in the index of a pandas series
or dataframe because that allows us to do time aggregations easily.

31.1 Loading the Data

For this section, I'm going to explore a dataset from the US Geologic Survey that deals with river
flow of a river in Utah called the Dirty Devil river.

This data is a tab-delimited ASCII file in detail described here'®.

The columns are:

* agency_cd - Agency collecting data

e site_no - USGS identification number of site

* datetime - Date

e tz cd - Timezone

e 144166_00060 - Discharge (cubic feet per second)

e 144166_00060_cd - Status of discharge. “A” (approved), "P” (provisional), “e” (estimate).
e 144167_00065 - Gage height (feet)

e 144167_00065_cd - Status of gage_height. ”A” (approved), "P” (provisional), “e” (estimate).

Here is my code to load the data. I have also included a tweak function that converts the date
information to actual dates and renames some columns. Note that the file is not a CSV file, but we
can specify tab as a separator. Also, we need to skip a few of the rows:

Bhttps:/ /nwis.waterdata.usgs.gov /usa/nwis /uv/?cb_00060=on&cb_00065=on-&format=rdb&site_no=09333500&period-
=2000-01-01&end_date=2020-09-28

1%https:/ /help.waterdata.usgs.gov /faq/about-tab-delimited-output Also see this link for a description of the
spelling of “gage” https:/ / www.usgs.gov /faqs/why-does-usgs-use-spelling-gage-instead-gauge

283

https://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00060=on&cb_00065=on-&format=rdb&site_no=09333500&period=&begin_date-=2000-01-01&end_date=2020-09-28
https://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00060=on&cb_00065=on-&format=rdb&site_no=09333500&period=&begin_date-=2000-01-01&end_date=2020-09-28
https://help.waterdata.usgs.gov/faq/about-tab-delimited-output
https://www.usgs.gov/faqs/why-does-usgs-use-spelling-gage-instead-gauge

31. Working with Time Series

>>> import pandas as pd
>>> yrl = 'https://github.com/mattharrison/datasets/raw/master '\
- '/data/dirtydevil.txt'
>>> df = pd.read_csv(url, skiprows=lambda num: num <34 or num == 35,
. sep="\t")
>>> def tweak_river(df_):

return (df_
.assign(datetime=pd.to_datetime(df_ .datetime))
.rename (columns={"'144166 _00060"': 'cfs',

'144167 00065"': 'gage height'})

.set_index('datetime")

)

>>> dd = tweak_river(df)
>>> dd

agency_cd site_no ... gage_height 144167 _00065 cd
datetime e
2001-05-07 01:00:00 USGS 9333560 ... NaN NaN
2001-05-07 01:15:00 USGS 93335080 ... NaN NaN
2001-05-07 01:30:00 USGS 9333500 ... NaN NaN
2001-05-07 01:45:00 USGS 9333560 ... NaN NaN
2001-05-07 02:00:00 USGS 9333560 ... NaN NaN
2020-09-28 08:30:00 USGS 9333500 6.16 P
2020-09-28 08:45:00 USGS 9333500 6.15 P
2020-09-28 09:00:00 USGS 9333500 6.15 P
2020-09-28 09:15:00 USGS 9333500 6.15 P
2020-09-28 09:30:00 USGS 9333500 6.15 P

[639305 rows x 7 columns]

31.2 Adding Timezone Information

Many times the date column is missing timezone information. In the Dirty Devil dataset, the tz_cd
column has offset abbreviations:

>>> dd.tz_cd

datetime

2001-05-07 01:00:00 MDT
2001-05-07 01:15:00 MDT
2001-05-07 01:30:00 MDT
2001-05-07 01:45:00 MDT
2001-05-07 02:00:00 MDT

2020-09-28 08:30:00 MDT
2020-09-28 08:45:00 MDT
2020-09-28 09:00:00 MDT
2020-09-28 09:15:00 MDT
2020-09-28 09:30:00 MDT
Name: tz _cd, Length: 539305, dtype: object

Iignored it above and have “naive” time data. Getting timezone information into a date column
can be slow, buggy, or frustrating. I spent a few hours messing around with trying to add timezone
information to this dataset.

My takeaway is that although the documentation and API make it appear that pd.to_datetime
should handle timezone data, I would not go down that path. Generally, you should

284

31.2. Adding Timezone Information

use pd.to_datetime to get a naive time and then convert the naive times to timezones with
.dt.tz_Tlocalize.

I tried concatenating the datetime and tz_cd columns together and passing that into
pd.to _datetime. That worked but took two minutes, whereas code to convert into a naive date
column in a fraction of that time (54 ms). I tried using format strings, replacing the timezones with
alternate spelling and using offsets with pd.to_datetime!” in an attempt to speed up the conversion.
They silently failed or errored out.

With the help of the pandas core developers, I was able to get that 2 minutes down to 15 seconds
with this code. The key points below are using numeric date offsets (not timezone abbreviations)
and utc=True:

>>> def tweak _river(df):

return (df_
.assign(datetime=1lambda df :
pd.to_datetime(df .datetime + " " +
df .tz cd.str.replace('MST', '-0700')

.str.replace('MDT', '-0660'"),
format="%Y-%m-%d %H:%M %z', utc=True))
.rename(columns={"'144166 00060': 'cfs',
'144167 00065': 'gage height'})
.set_index('datetime')

)

However, I was able to get the runtime down to 1 second. The code is more involved, but this
is 15-120x faster than the other code.

For my dataset, I wrote the following function, to_america_denver_time, to get my date parsing
with timezone information down from 2 minutes to 2 seconds. I group by the offset column and
then use the grouping name (the offset name) to call .dt.tz_localize. This creates a date with local
times. However, they are using offsets and not timezones.

To add timezone, you need to use .dt.tz_convert after creating the local time:

>>> def to_america_denver_time(df_, time _col, tz col):
return (df_
.assign(**{tz col: df [tz col].replace('MDT', 'MST7MDT')})
.groupby(tz _col)
[time col]
.transform(lambda s: pd.to_datetime(s)
.dt.tz localize(s.name, ambiguous=True)
.dt.tz _convert('America/Denver'))

)

>>> def tweak_river(df):
return (df_
.assign(datetime=to_america _denver time(df_, 'datetime',
'tz cd'))
.rename (columns={"'144166 00060"': 'cfs',
'144167 00065': 'gage height'})
.set_index('datetime"')

)

>>> dd = tweak_river(df)

Here is the resulting data:

7https:/ / github.com / pandas-dev / pandas/issues /43140

285

https://github.com/pandas-dev/pandas/issues/43140

31. Working with Time Series

>>> dd

agency cd ... gage_height 144167 _ 00065 cd
datetime R
2001-65-07 01:00:00-06:00 USGS ... NaN NaN
2001-05-07 01:15:00-06:00 USGS ... NaN NaN
2001-05-07 01:30:00-06:00 USGS ... NaN NaN
2001-65-07 01:45:00-06:00 USGS ... NaN NaN
2001-05-07 02:00:00-06:00 USGS ... NaN NaN
2020-09-28 08:30:00-06:00 USGS 6.16 P
2020-09-28 08:45:00-06:00 USGS 6.15 P
2020-09-28 09:00:00-06:00 USGS 6.15 P
2020-09-28 09:15:00-06:00 USGS 6.15 P
2020-09-28 09:30:00-06:00 USGS 6.15 P

[5639305 rows x 7 columns]

Note

One thing that bit me was I was trying to use 'MST' and 'MDT' as offset names. The underlying
pytz library that handles timezone information didn’t like them. (For a list of valid names
inspect pytz.all_timezones.) The timezone for this data is America/Denver.

31.3 Exploring the Data

I'm going to visualize the flow (cfs) of the river over time:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(dpi=600)
>>> dd.cfs.plot()
From looking at this visualization, it looks like there are some pretty big outliers. (Looking at a
histogram or calling .describe would also confirm this.):

>>> dd.cfs.describe()
count 493124.000000

mean 104.460537
std 477.341329
min 0.000000
25% 34.700000
50% 81.000000
75% 115.000000
max 35800.000000

Name: cfs, dtype: float64

31.4 Slicing Time Series

Because the dataframe has datetime data in the index, we get some special slicing abilities. We can
slice with strings that represent dates (or parts of dates). Below we will slice out the rows from
2018 onward:

>>> (dd
.cfs
.loc['2018':]
)

datetime

286

31.4. Slicing Time Series

35000

30000

25000

20000

15000

10000

5000

2018-01-01
2018-01-01
2018-01-01
2018-01-01
2018-01-01

2020-09-28
2020-09-28
2020-09-28
2020-09-28
2020-09-28
Name: cfs,

00:00:
00:15:
00:30:
00:45:
01:00:

08:30:
08:45:
09:00:
09:15:
09:30:

00-07:
60-07:
60-07:
60-07:
60-07:

00-06:
00-06:
00-06:
00-06:
00-06:

N\

ol

Jo b
o oSV SV 1SV
datetime

Figure 31.1: Visualization of flow of Dirty Devil river.

00
60
60
60
60

00
60
60
60
60

Length: 95886,

dtype:

92.80
88.30
90.50
90.50
94.00

.53
.20
.20
.20
.20
float64

[{oJ{o N {o R {o I {o]

We can include month information as well. When you specify just the month on an end slice, it
includes all entries from that month on both the start and end slices (which has different behavior
than both partial string slicing with .loc and position slicing with .iloc):

>>> (dd
.cfs
el)
datetime
2018-03-01
2018-03-01
2018-03-01

2018-03-01
2018-03-01

00:00:00-07
00:15:00-07
00:30:00-07
00:45:00-07
01:600:00-07

.loc['2018/3':'2019/5"']

:00
:00
:00
:00
:00

104.0
107.0
107.0
105.0
103.0

287

31. Working with Time Series

4000

3000

2000

1000

|

A P ot » AN E T I\
B g BT @ QT g g eV
datetime

Figure 31.2: Visualization of flow of Dirty Devil river from March 2018 through May 2019.

2019-05-31 22:45:00-06:00 121.

0
2019-05-31 23:00:00-06:00 123.0
2019-05-31 23:15:00-06:00 123.0
2019-05-31 23:30:00-06:00 125.0
2019-05-31 23:45:00-06:00 123.0
Name: cfs, Length: 43862, dtype: float64

Let’s visualize what that slice of data looks like:

>>> (dd
.cfs
.loc['2018/3"':'2019/5"]
.plot()
)
I'm going to clip the visualization and limit the upper value to 400 and try the visualization
again:
>>> (dd
.cfs
.loc['2018/3"':'2019/5"]

.clip(upper=400)
.plot()

288

31.4. Slicing Time Series

400

300

200

100

Qo

% %) \ %
2V &Y AV WY A A0V oY o
USRI I N T N

datetime

Figure 31.3: Visualization of flow of Dirty Devil river from March 2018 through May 2019 with value clipped
at 400.

Because the index is a time series, we can leverage the ability to resample. A common operation
these days is to plot rolling 7-day average data on top of daily data. The .rolling method accepts
a moving window size, window, and like a grouping operation, you generally aggregate the result.
Let’s do it:

>>> dd2018 = (dd
.cfs
.loc['2818/3':'2019/5"']
.clip(upper=400))

>>> ax = (dd2018
.resample('D")
.mean ()
.plot(figsize=(10,4), alpha=.5, linewidth=1, label='Daily"')
)

>>> ax = (dd2018

.resample('D")

.mean ()

.rolling(7)

.mean ()

.plot(figsize=(10,4), ax=ax, label='7-day Rolling')

289

31. Working with Time Series

Dirty Devil Flow 2018 (cfs)
400 —— Dpaily
350 —— [-dayRolling
300
250
200

150

100
50
0

Apr Jul Oct Jan Apr
2019

datetime

Figure 31.4: Visualization of flow of daily and weekly levels of Dirty Devil river from March 2018 through
May 2019 with value clipped at 400.

>>> ax.legend()
>>> ax.set title('Dirty Devil Flow 2018 (cfs)')

31.5 Missing Timeseries Data

Let’s look at dealing with missing data in timeseries. First we will search for it using .isna. One
of the nice features of the .query method is that you can call other methods from it. Here we use
.query and .isna to find missing values from the cfs column:

>>> (dd
[['cfs']]
.loc['2018/3':'2019/5"']
.query('cfs.isna()")
.)
cfs
datetime
2018-07-07 13:15:00-06:00 NaN
2018-07-07 13:30:00-06:00 NaN
2018-07-07 13:45:00-06:00 NaN
2018-07-07 14:00:00-06:00 NaN
2018-07-07 14:15:00-06:00 NaN

2018-08-18 08:15:00-06:00 NaN
2018-08-18 08:30:00-06:00 NaN
2018-08-18 08:45:00-06:00 NaN
2018-08-18 09:15:00-06:00 NaN
2018-08-18 10:30:00-06:00 NaN

[337 rows x 1 columns]

290

31.5. Missing Timeseries Data

0.8
— cfs

0.6

0.4

0.2

00 -—— —N e = — e AN e et et NN N e

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

07-Jul 08-Jul
2018

datetime

Figure 31.5: Visualization of missing data from flow of Dirty Devil river.

Here is code to visualize the missing data from July 7-8. This will help us understand how the
various methods work to deal with these missing values:
>>> (dd
[['cfs'1]
.loc['2018/7/7':'2018/7/8"]
. .plot(figsize=(10,3))

)

The series chapter discussed various methods for filling in missing data. Let’s visualize those

below. I'm adding an offset to each line so you can see the behavior:

plt.subplots(dpi=600, figsize=(10,3))

>>> fig, ax

>>> dd_july = (dd
['cfs']
.loc['2018/7/7 11:00':'2018/7/7 20:060"']
)

>>> dd_july.plot(ax=ax, label='original', linewidth=2)
>>> (dd_july

bFill ()

.add (.05)

.plot(label="bfill', ax=ax, linewidth=.5))

>>> (dd_july
FRi110)
.add(.1)
.plot(label="'ffill', ax=ax, linewidth=.5))

>>> (dd_july
.interpolate(method="'polynomial', order=3)
.add (.15)
.plot(label="interpolate poly (order 3)', ax=ax, linewidth=.5))

>>> (dd_july
.interpolate()
.add (.2)
.plot(label="1interpolate default',6 ax=ax, linewidth=.5))

291

31. Working with Time Series

Missing Values Demo

1.25 —— original

—— bfill

S
1.00 r \ — Afill
0.75 —— interpolate poly (order 3)
' —— interpolate default
0.50 —— interpolate nearest
fillna 1 L
0.00 —— —
11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

datetime

Figure 31.6: Visualization of filling in missing data from flow of Dirty Devil river.

>>> (dd_july
.interpolate(method="'nearest")
.add (.25)
.plot(label="4interpolate nearest', ax=ax, linewidth=.5))

>>> (dd_july
.fillna(1)
.add(.3)
.plot(label="'fillna 1', ax=ax, linewidth=.5))

>>> ax.legend()
>>> ax.set title('Missing Values Demo')

31.6 Exploring Seasonality

Time series data may have a seasonal component to it. Let’s examine how to explore this with
pandas (and related tools). We will explore the cubic feet per second column (cfs) of the Dirty
Devil dataset. We can summarize monthly behavior in this column by combining .groupby and
.describe. Note that we already have an index with date information in it, so one might suppose
that we could use .resample with 'M' as an offset alias. However, a . resample operation will put the
end date of each month in the index, while a .grouby on the month number will have only twelve
entries in the index:

>>> (dd

.groupby (dd.index.month)

.cfs

.describe()

.)
count mean std ... 50% 75% max

datetime ..
1 26011.0 117.268802 29.000354 ... 114.0 132.0 265.0
2 41309.0 125.890293 24.280297 ... 125.0 141.0 303.0
3 51807.0 127.037609 48.885942 ... 116.0 136.0 750.0
4 50669.0 82.786214 74.133528 ... 70.0 97.8 2140.0
5 49507.0 63.007851 68.791835 ... 43.9 78.5 1960.0

292

31.6. Exploring Seasonality

200
150
100
0
— ~ ™ < [Te) [te) ~ ') <)) o — ~
datetime
Figure 31.7: Visualization of monthly average of flow of Dirty Devil river.
6 41379.0 74.327241 139.857378 ... 32.0 82.5 2460.0
7 37089.0 62.775011 115.285805 ... 17.4 68.2 1660.0
8 37584.0 74.676246 247.800553 ... 25.6 59.1 7320.0
9 42272.0 128.309332 546.921269 ... 20.0 55.9 9540.0
10 44647.0 196.285529 1455.942059 ... 57.4 80.9 35800.0
11 42165.0 97.194344 39.743333 ... 83.3 105.0 766.0
12 28685.0 100.042608 26.700535 ... 97.8 113.0 407.0

[12 rows x 8 columns]

We can also visualize these components by plotting. Here is a chain to plot the mean for each
month as a bar plot:
>>> fig, ax = plt.subplots(dpi=600, figsize=(10,4))
>>> (dd
.groupby(dd. index.month)
['cfs']
.describe()
['mean']
.. .plot.bar(ax=ax)
)
We can also plot a line plot of each of the quantiles (I'm not showing the maximum value
because it has so many outliers, it blows out the y-axis):
>>> fig, ax = plt.subplots(dpi=600, figsize=(10,4))
>>> (dd
.groupby (dd. index.month)
['cfs']
.describe()
.loc[:, 'min':'75%"']
.. .plot.bar(ax=ax)
)
To get much fancier we could leverage the pandas .boxplot method, but at that point, I would
prefer using Seaborn'® which is built on top of Matplotlib and pandas and provides a lot of power.
I'm going to use the Seaborn boxplot function, and pass in clipped measurements to the data
parameter. We also need to specify what we plot in the x and y axis. I create a column from the

293

31. Working with Time Series

EEE min
125 - 25%
100 mmm 50%
. 75%
75
50
. ‘ i |
0 I I | -I II lI | I
— o~ ™ < 7o) © ~ 0 o o — ~
datetime
Figure 31.8: Visualization of monthly quantiles of flow of Dirty Devil river.
400
350
300
250
£ 200
150
100
50
0
1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 31.9: Boxplot of monthly quantiles of flow of Dirty Devil river.

index with the month data (and rename it from datetime to Month), and the cfs column for x and y
respectively:
>>> import seaborn as sns
>>> fig, ax = plt.subplots(dpi=600, figsize=(10,4))
>>> sns.boxplot(data=dd.assign(cfs=dd.cfs.clip(upper=400)),
x=dd.index.month.rename('Month'), y='cfs', ax=ax)

Plots such as these can give us an understanding of the monthly patterns we see in the data.
For more complex time series analysis, | would consider using a library like Kats!’.

Bhttps:/ /seaborn.pydata.org/

Phttps: / /facebookresearch.github.io/Kats/

294

https://seaborn.pydata.org/
https://facebookresearch.github.io/Kats/

31.7. Resampling Data

31.7 Resampling Data

We explored resampling in the series section, but I want to show some of the power that you get
by using offset aliases. We will be using the flow data from the Dirty Devil dataset to dive into
resampling. This data has information sampled at a 15-minute interval:

>>> dd.cfs

datetime

2001-05-07 01:00:00-06:00 71.00
2001-05-07 01:15:00-06:00 71.00
2001-05-07 01:30:00-06:00 71.00
2001-05-07 01:45:00-06:00 70.00
2001-05-07 02:00:00-06:00 70.00

2020-09-28 08:30:00-06:00 9.53
2020-09-28 08:45:00-06:00 9.20
2020-09-28 09:00:00-06:00 9.20
2020-09-28 09:15:00-06:00 9.20

2020-09-28 09:30:00-06:00 9.20
Name: cfs, Length: 539305, dtype: floaté64

Let’s aggregate this information from a 15-minute interval to a daily interval. Because the index
has date information in it, we can use .resample in combination with 'D' (daily) as the offset alias.
I am going to use .median as the aggregation method because the flow data is heavily skewed:

>>> (dd

.resample('D")

.median()

-)
site_no cfs gage_height

datetime
2001-05-07 00:00:00-06:00 9333500.0 71.50 NaN
2001-05-08 00:00:00-06:00 9333500.0 69.00 NaN
2001-05-09 00:00:00-06:00 9333500.0 63.50 NaN
2001-05-10 00:00:00-06:00 9333500.0 55.00 NaN
2001-05-11 00:00:00-06:00 9333500.0 55.00 NaN
2020-09-24 00:00:00-06:00 9333500.0 9.53 6.16
2020-09-25 00:00:00-06:00 9333500.0 10.20 6.18
2020-09-26 00:00:00-06:00 9333500.0 10.90 6.20
2020-09-27 00:00:00-06:00 9333500.0 10.20 6.18
2020-09-28 00:00:00-06:00 9333500.0 9.53 6.16

[7085 rows x 3 columns]

31.8 Rules with Offset Aliases

If we wanted to combine multiple days, we can do that as well by providing a numeric rule before
the alias. You can insert a number before the offset alias. In this example, we will aggregate every
two days by using '2D'. Pay attention to the index of the result:
>>> (dd

.resample('2D")

.median()

)
site_no cfs gage_height

datetime

295

31. Working with Time Series

2001-05-07 00:00:00-06:00 9333500.6 69.00 NaN
2001-05-09 00:00:00-06:00 9333500.06 56.00 NaN
2001-05-11 00:00:00-06:00 9333500.06 54.00 NaN
2001-65-13 00:00:00-06:00 9333500.0 47.00 NaN
0

2001-05-15 00:00:00-06:00 9333500. 54.00 NaN
2020-09-20 00:00:00-06:00 9333500.0 6.83 6.07
2020-09-22 00:00:00-06:00 9333500.0 7.68 6.10
2020-09-24 00:00:00-06:00 9333500.0 9.86 6.17
2020-09-26 00:00:00-06:00 9333500.6 10.50 6.19
2020-09-28 00:00:00-06:00 9333500.0 9.53 6.16

[3543 rows x 3 columns]

31.9 Combining Offset Aliases

We can also combine offset aliases. If we want to aggregate at the three-day, 2-hour and 10-minute
interval, we can combine all of these rules with the offset aliases into a single string:

>>> (dd

.resample ('3D2H10min ")

.median ()

)
site_no cfs gage_height

datetime
2001-05-07 00:00:00-06:00 9333500.0 67.00 NaN
2001-05-10 02:10:00-06:00 9333500.0 55.00 NaN
2001-05-13 04:20:00-06:00 9333500.0 49.00 NaN
2001-05-16 06:30:00-06:00 9333500.0 50.00 NaN
2001-05-19 08:40:00-06:00 9333500.0 46.00 NaN
2020-09-14 13:20:00-06:00 9333500.0 5.79 6.030
2020-09-17 15:30:00-06:00 9333500.0 6.04 6.040
2020-09-20 17:40:00-06:00 9333500.0 7.11 6.080
2020-09-23 19:50:00-06:00 9333500.0 10.03 6.175
2020-09-26 22:00:00-06:00 9333500.0 9.86 6.170

[2293 rows x 3 columns]

31.10 Anchored Offset Aliases

Some of the frequencies in offset aliases allow you to modify when the window for the frequency
ends. You can use this operation on the weekly, quarterly, and yearly frequencies. Note that the
default quarter ends in March, June, September, and December:

>>> (dd

.resample('Q")

.median()

)
site_no cfs gage_height

datetime
2001-06-30 00:00:00-06:00 9333500.0 44 .00 NaN
2001-09-30 00:00:00-06:00 9333500.0 27.00 NaN
2001-12-31 00:00:00-07:00 9333500.0 85.00 NaN
2002-03-31 00:00:00-07:00 9333500.0 122.00 NaN

296

31.11. Resampling to Finer-grain Frequency

2002-06-30 00:00:00-06:00 9333500.0 46.00 NaN
2019-09-30 00:00:00-06:00 9333500.0 13.30 6.21
2019-12-31 00:00:00-07:60 9333500.0 92.10 6.75
2020-03-31 00:00:00-06:00 9333500.0 126.00 6.99
2020-06-30 00:00:00-06:00 9333500.0 23.20 6.55
2020-09-30 00:00:00-06:00 9333500.0 5.79 5.96

[78 rows x 3 columns]

We can tack on -JAN to force the quarters to end in January, April, July, and October:

>>> (dd

.resample('Q-JAN")

.median()

)
site_no cfs gage_height

datetime
2001-07-31 00:00:00-06:00 9333500.0 42.0 NaN
2001-16-31 00:00:00-07:00 9333500.0 39.0 NaN
2002-01-31 00:00:00-07:00 9333500.0 116.0 NaN
2002-04-30 00:00:00-06:00 9333500.0 96.0 NaN
2002-07-31 00:00:00-06:00 9333500.0 13.0 NaN
2019-10-31 00:00:00-06:00 9333500.0 12.8 6.25
2020-01-31 00:00:00-07:00 9333500.0 116.0 6.84
2020-04-30 00:00:00-06:00 9333500.0 116.0 6.98
2020-07-31 00:00:00-06:00 9333500.0 13.9 6.37
2020-10-31 00:00:00-06:00 9333500.0 0.5 5.49

[78 rows x 3 columns]

For annual and quarterly offset aliases, you can change the anchoring by using -JAN, -FEB, ...
-DEC. For weekly offset aliases, you can change the anchoring by using -SUN, -MON, ... -SAT.

31.11 Resampling to Finer-grain Frequency

Remember, this river flow data is at the 15-minute frequency. If we wanted to have it at a two
minute frequency, we could do the following;:

>>> (dd

.resample('2min"')

.median()

)
site_no cfs gage height

datetime
2001-05-07 01:00:00-06:00 9333500.0 71.0 NaN
2001-05-07 01:02:00-06:00 NaN NaN NaN
2001-05-07 01:04:00-06:00 NaN NaN NaN
2001-05-07 01:06:00-06:00 NaN NaN NaN
2001-05-07 01:08:00-06:00 NaN NaN NaN
2020-09-28 09:22:00-06:00 NaN NaN NaN
2020-09-28 09:24:00-06:00 NaN NaN NaN
2020-09-28 09:26:00-06:00 NaN NaN NaN
2020-09-28 09:28:00-06:00 NaN NaN NaN
2020-09-28 09:30:00-06:00 9333500.0 9.2 6.15

297

31. Working with Time Series

[5100736 rows x 3 columns]

You will notice that there is now a bunch of missing data. You will probably want to refer to
the missing data section and adopt an appropriate option to deal with it. Below, we interpolate the
missing values:

>>> (dd
.resample('2min"')
.median()
. .interpolate()
)
site_no cfs gage height
datetime
2001-05-07 01:00:00-06:00 9333500.0 71.0 NaN
2001-05-07 01:02:00-06:00 9333500.0 71.0 NaN
2001-05-07 01:04:00-06:00 9333500.0 71.0 NaN
2001-05-07 01:06:00-06:00 9333500.0 71.0 NaN
2001-05-07 01:08:00-06:00 9333500.0 71.0 NaN
2020-09-28 09:22:00-06:00 9333500.0 9.2 6.15
2020-09-28 09:24:00-06:00 9333500.0 9.2 6.15
2020-09-28 09:26:00-06:00 9333500.0 9.2 6.15
2020-09-28 09:28:00-06:00 9333500.0 9.2 6.15
2020-09-28 09:30:00-06:00 9333500.0 9.2 6.15

[6100736 rows x 3 columns]

31.12 Grouping a Date Column with pd.Grouper

The .resample method is a powerful way to aggregate data with dates in the index. But what if you
want to aggregate dataframes by a column with date information? Enter the pd.Grouper class.

Here is an anchored offset alias using . resample on the Dirty Devil data. It aggregates on quarters
that end in January:

>>> (dd

.resample('Q-JAN")

.median()

)
site_no cfs gage_height

datetime
2001-07-31 00:00:00-06:00 9333500.0 42.0 NaN
2001-10-31 00:00:00-07:00 9333500.0 39.0 NaN
2002-01-31 00:00:00-07:00 9333500.0 116.0 NaN
2002-04-30 00:00:00-06:00 9333500.0 96.0 NaN
2002-07-31 00:00:00-06:00 9333500.0 13.0 NaN
2019-10-31 00:00:00-06:00 9333500.0 12.8 6.25
2020-01-31 00:00:00-07:00 9333500.0 116.0 6.84
2020-04-30 00:00:00-06:00 9333500.0 116.0 6.98
2020-07-31 00:00:00-06:00 9333500.0 13.9 6.37
2020-10-31 00:00:00-06:00 9333500.0 0.5 5.49

[78 rows x 3 columns]

Assuming that we have a date column that we want to aggregate on (I'm going to move the
index into a column, datetime), we could perform the same aggregation using pd.Grouper. The key
parameter specifies the column to group on, the freq parameter specifies the offset alias:

298

31.12. Grouping a Date Column with pd.Grouper

>>> (dd
.reset_index()
.groupby (pd.Grouper (key="'datetime', freq='Q-JAN'))

.median()
)

site_no cfs gage_height
datetime
2001-07-31 00:00:00-06:00 9333500.0 42.0 NaN
2001-16-31 00:00:00-07:00 9333500.0 39.0 NaN
2002-01-31 00:00:00-07:00 9333500.0 116.0 NaN
2002-04-30 00:00:00-06:00 9333500.0 96.0 NaN
2002-07-31 00:00:00-06:00 9333500.0 13.0 NaN
2019-16-31 00:00:00-06:00 9333500.0 12.8 6.25
2020-01-31 00:00:00-07:00 9333500.0 116.0 6.84
2020-04-30 00:00:00-06:00 9333500.0 116.0 6.98
2020-07-31 00:00:00-06:00 9333500.0 13.9 6.37
2020-106-31 00:00:00-06:00 9333500.0 0.5 5.49
[78 rows x 3 columns]

Method Description

pd.to_datetime(arg, errors='raise',
dayfirst=False, yearfirst=False,
utc=False, format=None, exact=True,
unit=None, infer _datetime format=False,
origin="unix', cache=True)

s.dt.tz localize(tz, ambiguous='raise',
nonexistent="'raise')

Convert an arg to a datetime. Not guaranteed to
return a datetime64 type. Use utc=True to convert
from naive to UTC (tz-aware) time. Specify
strftime string with format. When parsing time
since epoch, set unit="'s' for seconds.

Return a date converted to a timezone. Set tz=None to
convert to naive time. For ambiguous times (when
clocks move back for daylight savings) set to
"infer' to base on order, array of True/False for
DST, non-DST time, 'NaT' to leave empty. For
nonexistent times (when clock moves forward) set
nonexistent to 'shift_forward', 'shift_backward',
'NaT', or timedelta object.

Convert from an existing timezone to another
timezone. Set tz=None to convert to UTC time.

If you have a dataframe/series with a datetime
index, you can slice on partial date strings.

Return a resampled dataframe (with a date in the

s.dt.tz_convert(tz)
df.loc

df.resample(rule, axis=0, closed=None,

label=None, convention='start',
kind=None, on=None, level=None,
origin="'start_day')

df.rolling(window, min_periods=None,
center=False, win_type=None, on=None,
axis=0, closed=None, method='single')

s.bfill(axis=0, limit=None,
downcast=None)

s.ffill(axis=0, limit=None,
downcast=None)

index, or specify the date column with on). Set
closed to 'right' to include the right side of
interval (default is 'right' for M/A/Q/BM/BQ/W). Set

the label to 'right' to use the right label for bucket.

Can specify the timestamp to start origin.

Return a window object to perform aggregations on.

Backward fill the missing values. Alternate syntax

for s.fillna(method="bfill")

Forward fill the missing values. Alternate syntax for

s.fillna(method="ffill")

299

31. Working with Time Series

s.interpolate(method="'1inear', axis=0, Return a series with interpolated values.
limit=None, limit_direction='forward',
limit_area=None, downcast=None,

**kwargs,)
s.fillna(value=None, method=None, axis=0, Use the value (scalar, dict, series) or method (' ffill’,
limit=None, downcast=None) 'bfill’, or 'nearest') for filling in missing data.
pd.Grouper(key=None, level=None, Return a groupby object based on the column (key) or
freg=None, axis=0, sort=False, date index (key=None) and offset alias (freq).

closed=None, label=None,
convention=None, origin="'start day',
offset=None, dropna=True)

Table 31.1: Chapter Methods

31.13 Summary

There are many tools to manipulate time-series data in pandas. I recommend combining liberal
amounts of visualizations when manipulating the data to validate the results.

31.14 Exercises
With a dataset of your choice:

1. Convert a date column from a string to a proper date.
2. Group the data by month names and look at the mean values.
3. Group the data by each month of every year and look at the mean values.

4. Insert the date column in the index and slice out a portion of the rows by date.

300

Chapter 32

Joining Dataframes

Dataframes hold tabular data. Databases hold tabular data. You can perform many of the same
operations on dataframes that you do to database tables. In this section, we will look at the theory
for joining dataframes.

Here are the two tables we will be using for examples:

Index color name
0 Blue John
1 Blue George
2 Purple Ringo

Index carcolor name
3 Red Paul
1 Blue George
2 Ringo

32.1 Adding Rows to Dataframes

Let’s assume that we have two dataframes that we want to combine into a single dataframe, with
rows from both. The simplest way to do this is with the concat function. Below, we create the
dataframes:
>>> import pandas as pd
>>> import numpy as np
>>> df1 = pd.DataFrame({'name': ['John', 'George', 'Ringo'],
. 'color': ['Blue', 'Blue', 'Purple']})
>>> df2 = pd.DataFrame({'name': ['Paul', 'George', 'Ringo'],

'carcolor': ['Red', 'Blue', np.nanl]l},

index=[3, 1, 2])

The concat function in the pandas library accepts a list of dataframes to combine. This function
is useful when you have multiple files that you want to combine into one dataframe. It will find
any columns that have the same name and use a single column for each of the repeated columns.
In this case, name is common to both dataframes:

>>> pd.concat([df1, df2])

carcolor color name
0 NaN Blue John
1 NaN Blue George

301

32. Joining Dataframes

2 NaN Purple Ringo
3 Red NaN Paul
1 Blue NaN George
2 NaN NaN Ringo

Note that .concat preserves index values, so the resulting dataframe has duplicate index values.
If you would prefer an error when duplicates appear, you can pass the verify_integrity=True
parameter setting;:

>>> pd.concat([df1, df2], verify integrity=True)
Traceback (most recent call last):

ValueError: Indexes have overlapping values:
Int64Index([1, 2], dtype="int64"')
Alternatively, if you would prefer that pandas create new index values for you, pass in
ignore_index=True as a parameter:

>>> pd.concat([df1, df2], ignore_index=True)
carcolor color name

0 NaN Blue John
1 NaN Blue George
2 NaN Purple Ringo
3 Red NaN Paul
4 Blue NaN George
5 NaN NaN Ringo

32.2 Adding Columns to Dataframes

The concat function also can align dataframes based on the index values, rather than using the
columns. If you set axis=1, we get this behavior. I do not use this operation often, rather I use
.assign to create columns. However, here is an example of concat along the columns axis:

>>> pd.concat([df1, df2], axis=1)

name color name carcolor
0 John Blue NaN NaN
1 George Blue George Blue
2 Ringo Purple Ringo NaN
3 NaN NaN Paul Red

Note that this repeats the name column. Using SQL, we can join two database tables together
based on common columns. If we want to perform a join similar to a database join on a dataframe,
we need to use the .merge method. We will cover that in the next section.

32.3 Joins

Databases have different types of joins. The four common ones include inner, outer, left, and right.
The dataframe has two methods to support these operations, .join and .merge. I prefer the .merge
method.

Note

The .join method is meant for joining based on the index rather than columns. In practice, I
find myself joining based on columns instead of index values.

302

32.3. Joins

Inner Join
df1 df2
name pet Name Color
0 Fred Dog 0 Suzy Black
1 Suzy Dog 1 Suzy Blue
2 Suzy Cat 2 Suzy Red
3 Bob Fish 3 Fred Green
4 Joe Yellow
5 Joe Blue
(df1
.merge(df2.assign(name=df2.Name))
name pet Name Color
0 Fred Dog Fred Green
1 Suzy Dog Suzy Black
2 Suzy Dog Suzy Blue
3 Suzy Dog Suzy Red
4 Suzy Cat Suzy Black
5 Suzy Cat Suzy Blue
6 Suzy Cat Suzy Red

Note every Suzy row matches with every Suzy in df2!

Figure 32.1: The .merge method performs an inner join by default. The resulting dataframe will only have
rows where the merge column value exists in both dataframes.

If you want the . join method to join based on column values, you need to set that column
as the index first:

>>> df1.set_index('name').join(df2.set_index('name"'))
color carcolor

name
John Blue NaN
George Blue Blue
Ringo Purple NaN

It is easier to just use the .merge method.

The default join type for the .merge method is an inner join. The .merge method looks for common
column names in the dataframe it is going to join. The method aligns the values in those columns.
If both columns have values that are the same, they are kept along with the remaining columns
from both data frames. Rows with values in the aligned columns that only appear in one data
frame are discarded:
>>> df1.merge(df2) # inner join

name color carcolor

0 George Blue Blue
1 Ringo Purple NaN

When the how='outer' parameter setting is passed in, an outer join is performed. Again, the
method looks for common column names. It aligns the values for those columns and adds the

303

32. Joining Dataframes

Left Join
df1 df2

name pet Name Color
0 Fred Dog 0 Suzy Black
1 Suzy Dog 1 Suzy Blue
2 Suzy Cat 2 Suzy Red
3 Bob Fish 3 Fred Green

4 Joe Yellow
5 Joe Blue
(df1
.merge(df2.assign(name=df2.Name), how="'left')

name pet Name Color
0 Fred Dog Fred Green
1 Suzy Dog Suzy Black
2 Suzy Dog Suzy Blue
3 Suzy Dog Suzy Red
4 Suzy Cat Suzy Black
5 Suzy Cat Suzy Blue
6 Suzy Cat Suzy Red
7 Bob Fish nan nan

Note every Suzy row matches with every Suzy in df2! Bob has missing values

Figure 32.2: A left join keeps all values from the left merge column (orange and red). The values that are
unique to the right dataframe (yellow) are dropped. Note the combinatoric explosion for Suzy because each
left value is matched with all the values in the right.

values from the other columns of both data frames. If either dataframe had a value in the field that
we join on that was absent from the other, the new columns are filled with NaN:

>>> df1.merge(df2, how='outer')
name color carcolor

0 John Blue NaN
1 George Blue Blue
2 Ringo Purple NaN
3 Paul NaN Red

To perform a left join, pass the how="1left' parameter setting. A left join keeps only the values
from the columns in the dataframe that the .merge method is called on. If the other dataframe is
missing aligned values, NaN is used to fill in their values:

>>> df1.merge(df2, how='left"')
name color carcolor

0 John Blue NaN
1 George Blue Blue
2 Ringo Purple NaN

Finally, there is support for a right join as well. A right join keeps the values from the dataframe
that is passed in as the first parameter of the .merge method. If the dataframe that .merge was called
on has aligned values, they are kept, otherwise NaN is used to fill in the missing values:

304

32.3. Joins

Right Join
df1 df2

name pet Name Color
0 Fred Dog 0 Suzy Black
1 Suzy Dog 1 Suzy Blue
2 Suzy Cat 2 Suzy Red
3 Bob Fish 3 Fred Green

4 Joe Yellow
5 Joe Blue
(df1
.merge(df2.assign(name=df2.Name), how="'right') -

name pet Name Color
0 Suzy Dog Suzy Black
1 Suzy Cat Suzy Black
2 Suzy Dog Suzy Blue
3 Suzy Cat Suzy Blue
4 Suzy Dog Suzy Red
5 Suzy Cat Suzy Red
6 Fred Dog Fred Green
7 Joe nan Joe Yellow
8 Joe nan Joe Blue

Note every Suzy row matches with every Suzy in df2! Joe has missing values

Figure 32.3: A right join keeps all values from the right merge column (orange and yellow). The values that
are unique to the left dataframe (red) are dropped.

>>> df1.merge(df2, how='right")
name color carcolor

0 George Blue Blue
1 Ringo Purple NaN
2 Paul NaN Red

If we want to join on columns that don’t have the same name, we can use the left_on and
right_on parameters. We can also specify a subset of columns if we don’t want to merge on all of
the common columns:
>>> df1.merge(df2, how='right', left on='color',

right on="'carcolor')
name_x color name_y carcolor

0 John Blue George Blue
1 George Blue George Blue
2 NaN NaN Paul Red
3 NaN NaN Ringo NaN

The .merge method has a few other parameters that turn out to be useful in practice. The table
below lists them:

305

32. Joining Dataframes

Outer Join
df1 df2

name pet Name Color
0 Fred Dog 0 Suzy Black
1 Suzy Dog 1 Suzy Blue
2 Suzy Cat 2 Suzy Red
3 Bob Fish 3 Fred Green

4 Joe Yellow
5 Joe Blue
(df1
.merge(df2.assign(name=df2.Name), how="'outer"')

name pet Name Color
0 Fred Dog Fred Green
1 Suzy Dog Suzy Black
2 Suzy Dog Suzy Blue
3 Suzy Dog Suzy Red
4 Suzy Cat Suzy Black
5 Suzy Cat Suzy Blue
6 Suzy Cat Suzy Red
7 Bob Fish nan nan
8 Joe nan Joe Yellow
9 Joe nan Joe Blue

Note every Suzy row matches with every Suzy in df2! Bob and Joe have missing values

Figure 32.4: An outer join keeps all values from the left and right merge columns.

Parameter Meaning
on Column names to join on. String or list. (Default is intersection of names).
left_on Column names for left dataframe. String or list. Used when names don’t overlap.
right_on Column names for right dataframe. String or list. Used when names don’t overlap.
left_index Join based on left dataframe index. Boolean
right_index Join based on right dataframe index. Boolean

32.4 Join Indicators

The .merge method has an option to add a column that indicates where the data in the row can come
from. If you include the indicator=True parameter, pandas will create a column called _merge. The
indicator parameter can also be a string, in which can the new column will be the name of the
string rather than _merge.

The _merge column will have the values of left_only, right_only, or both to indicate the row came
from the dataframe .merge was called on, the data frame passed in, or both of them respectively:

>>> df1.merge(df2, how='outer',
indicator=True)

name color carcolor _merge
0 John Blue NaN left_only
1 George Blue Blue both
2 Ringo Purple NaN both
3 Paul NaN Red right only

306

32.5. Merge Validation

32.5 Merge Validation

The .merge method recently added a useful option, the validate parameter. It will raise a MergeError
if the join validates a constraint. The constraint can be '1:1', '1:m', or 'm:1"' for ensuring that the
join keys are indeed one to one, one to many, or many to one. You can also specify 'm:m' for many
to many, but that constraint is always ignored.

In the following example, the left key is color, which has non-unique values (many) and the
right key is carcolor which is unique (one), so the constraint should be 'm:1'. If we pass in a wrong
constraint, like a one to many constraint, the MergeError is raised:
>>> df1.merge(df2, how='right', left on='color',

right on='carcolor', validate='1:m"')
Traceback (most recent call last):

pandas.errors.MergeError: Merge keys are not
unique in left dataset; not a one-to-many merge

This parameter is useful to check that your data looks like you think it should. I recommend
validating your data after merges.

32.6 Joining Data Example

In the previous section, we discussed the theory behind joining data. In this section, we will look
at a concrete example.

Most of the data we have looked at in the book has been delivered in a single CSV file.
Sometimes we have data from multiple sources, and we need to combine them. This section will
explore joining a real-world dataset.

32.7 Dirty Devil Flow and Weather Data

In this section we will revisit the Dirty Devil data. Let’s load the flow and gage height data. In this
case we will leave the datetime column as a column and not use it for the index:
>>> import pandas as pd

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/"\
"dirtydevil.txt'

>>> df = pd.read csv(url, skiprows=lambda num: num <34 or num == 35,
.. sep="\t")
>>> def to_us mountain_time(df_ , time col, tz col):

return (df_

.assign(**{tz col: df [tz col].replace('MDT",
"MST7MDT ') })

.groupby(tz _col)

[time col]

.transform(lambda s: pd.to_datetime(s)
.dt.tz localize(s.name, ambiguous=True)
.dt.tz _convert('US/Mountain'))

)

>>> def tweak river(df):
return (df_
.assign(datetime=to_us_mountain_time(df_, 'datetime', 'tz cd'))
.rename (columns={"'144166 _00060"': 'cfs',
'144167 _00065"': 'gage height'})

307

32. Joining Dataframes

)
>>> dd = tweak _river(df)
>>> dd

agency_cd site_no ... gage _height 144167 _00065 cd
0 USGS 9333500 ... NaN NaN
1 USGS 9333500 ... NaN NaN
2 USGS 9333500 ... NaN NaN
3 USGS 9333500 ... NaN NaN
4 USGS 9333500 ... NaN NaN
539300 USGS 9333500 6.16 P
539301 USGS 9333500 6.15 P
539302 USGS 9333500 6.15 P
539303 USGS 9333500 6.15 P
539304 USGS 9333500 6.15 P

[639305 rows x 8 columns]

I'm also going to load some meteorological data®® from Hanksville, Utah, a city nearby the
river. We will then join both datasets together so we have flow data as well as temperature and
precipitation information.

Some of the columns that are interesting are:

DATE - Date

PRCP - Precipiation in inches

TMIN - Minimum temperature (F) for day

TMAX - Maximum temperature (F) for day

TOBS - Observed temperature (F) when measurement made

>>> url = 'https://github.com/mattharrison/datasets/raw/master/data/"'\
'"hanksville.csv'

>>> temp_df = pd.read csv(url)
>>> def tweak temp(df):
return (df_
.assign(DATE=pd.to_datetime(df_.DATE)
.dt.tz_localize('US/Mountain', ambiguous=False))
.loc[:,['DATE', 'PRCP', 'TMIN', 'TMAX', 'TOBS']]

)

>>> temp_df = tweak _temp(temp df)
>>> temp_df

DATE PRCP TMIN TMAX TOBS
0 2000-01-01 00:00:60-07:606 0.62 21.0 43.0 28.0
1 2000-01-02 00:00:60-07:606 0.63 24.0 39.0 24.0
2 2000-01-03 00:00:00-07:00 0.00 7.0 39.0 18.0
3 2000-01-04 00:00:00-07:00 0.00 5.0 39.0 25.0
4 2000-01-05 00:00:00-07:60 0.60 10.0 44.0 22.0

https: / /www.ncdc.noaa.gov/cdo-web/

308

https://www.ncdc.noaa.gov/cdo-web/

32.8. Joining Data

6843
6844
6845
6846
6847

2020-09-20
2020-09-21
2020-09-22
2020-09-23
2020-09-24

00:00:00-06:
00:00:00-06:
00:00:00-06:
00:00:00-06:
00:00:00-06:

60
60
60
00
60

[6848 rows x 5 columns]

32.8 Joining Data

46.
47.
54.
47.
43.

[«» N <> B «» B «» B <]

92.
92.
84.
91.
94.

[« I <> B «» B «» B «»)

83.
84.
17.
87.
88.

[«» N <> B «» B «» B <]

The pandas API provides a function for merging data, pd.merge. It also has two methods for joining

data, .join and .merge that wrap that function. I will use the .merge method.

Let’s try to use .merge and merge by date. This method will try to merge by columns that have
the same name. The dd dataframe has a datetime column, and temp_df has a DATE column. We can
use the left_on and right_on parameters to help it know how to align the data. The .merge method
tries to do an inner join by default. That means that row with values that are the same in the merge
columns will be joined together:

>>> (dd
.merge(temp _df, left on='datetime',

S o 2o

4968
4969
4970
4971
4972

[4973 rows x 13 columns]

agency _cd
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS

site_no
9333500
9333500
9333500
9333500
9333500
9333500
9333500
9333500
9333500
9333500

2001-65-08
2001-05-09
2081-05-186
2081-05-11
2001-05-12

2020-09-20
2020-09-21
2020-09-22
2020-09-23
2020-09-24

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

right on="'DATE")

datetime

00-06:
00-06:
60-06:
00-06:
00-06:

00-06:
00-06:
60-06:
00-06:
00-06:

00
60
60
60
60
60
60
60

60
00

TMIN
43.
36.
50.
46.
45.

(<> B «» I «» B «» B <]

46.
47.
54.
47.
43.

[« B «» I «» B «» B «» Y

TMAX
85.
92.
92.
87.
93.

(<> B <> B «» B «» B <3]

92.
92.
84.
91.
94.

[n I «» B «» B «c» T s JEEY

TOBS
58.
64.
67.
60.
72.

(<> B «» I «» i «» B <]

83.
84.
77.
87.
88.

[« B «» I «» B «» I «» Y

This appears to have worked but is somewhat problematic. Remember that the dd dataset has a
15-minute frequency, but temp_df only has daily data, so we are only using the value from midnight.
We should probably use our resampling skills to calculate the median flow value for each date and
then merge. In that case, we will want to use the index of the grouped data to merge, so we specify

left_index=True:

>>> (dd
.groupby(pd.Grouper (key="datetime', freq='D"))

492
493
494
495
496
6843
6844

.median()

.merge(temp _df, left index=True, right on='DATE')

site_no
9333500.
9333500.
9333500.
9333500.
9333500.

(<> B «» I «» i «» B <]

@

9333500.
9333500.

o

cfs
71.50
69.00
63.50
55.00
55.00
6.83
6.83

gage _height
NaN
NaN
NaN
NaN
NaN
6.07
6.07

TMIN
41.
43.
36.
50.
46.

oo oo

46.0
47.0

TMAX

82.
85.
92.
92.
87.

(<> B «» I «» i« B <]

92.0

92.

TOBS
5.
8.
64.
67.
60.

(<> B «» I «» B «» B <]

83.0
84.0

309

32. Joining Dataframes

6845 9333500.0 7.39 6.09 ... 54.0 84.0 77.0
6846 9333500.0 7.97 6.11 ... 47.0 91.0 87.0
6847 9333500.0 9.563 6.16 ... 43.0 94.0 88.0

[6356 rows x 8 columns]

That looks better (and gives us a few more rows of data).

32.9 Validating Joined Data

Let’s validate that we had a one to one join, ie each date from the flow data matched up with a
single date from the temperature data. We can use the validate parameter to do this:

>>> (dd

.groupby (pd.Grouper (key="'datetime', freq='D"'))

.median()

.merge(temp_df, left index=True, right on='DATE',
how='inner', validate='1:1")

site_no cfs gage height ... TMIN TMAX TOBS
492 9333500.86 71.50 NaN ... 41.0 82.0 55.0
493 9333500.6 69.00 NaN ... 43.0 85.0 58.0
494 9333500.0 63.50 NaN ... 36.0 92.0 64.0
495 9333500.06 55.00 NaN ... 508.0 92.0 67.0
496 9333500.8 55.00 NaN ... 46.0 87.0 60.0
6843 9333500.0 6.83 6.07 ... 46.0 92.0 83.0
6844 9333500.0 6.83 6.07 ... 47.0 92.0 84.0
6845 9333500.0 7.39 6.09 ... 54.0 84.0 77.0
6846 9333500.0 7.97 6.11 ... 47.0 91.0 87.0
6847 9333500.0 9.53 6.16 ... 43.0 94.0 88.0

[6356 rows x 8 columns]

Because this did not raise a MergeError, we know that our data had non-repeating date fields.

32.10 Visualization of Merged Data

You know that I'm a big fan of visualization. Let’s visualize the merged time series. We will add
on to our merge chain, stick the date in the index, pull out the years from 2014 forward, use the cfs,
gage_height, PRCP, and TOBS columns, interpolate the missing values, do a rolling 15 day average,
and plot the result in their own subplot:

>>> fig, ax = plt.subplots(dpi=600)

>>> (dd

.groupby (pd.Grouper (key="'datetime', freq='D"))

.median()

.merge(temp_df, left_index=True, right on='DATE',
how="inner', validate='1:1")

.set_index ('DATE")

.loc['2014':,['cfs', 'gage height', 'PRCP', 'TOBS']]

.interpolate()

.rolling(15)

.mean ()

. .plot(subplots=True, figsize=(10,8), ax=ax)

o)

>>> fig.suptitle('Dirty Devil Metrics (15 day average)')

310

32.10. Visualization of Merged Data

Dirty Devil Metrics (15 day average)

250 cfs
0
7.5 _ 20
gage_height
5.0
20
01 PRCP
0.0
100 20
50 TOBS
2014 2015 2016 2017 2018 2019 2020

NATF

Figure 32.5: Visualization of 15-day average for Dirty Devil river metrics.

Here’s a scatterplot of temperature against river flow. I'm coloring this by month of the year:

>>> fig, ax = plt.subplots(dpi=600)
>>> dd2 = (dd
.groupby(pd.Grouper (key="datetime', freq='D"))
.median()
.merge(temp_df, left _index=True, right on='DATE',
how="'inner', validate='1:1")
... .query('cfs < 400")
)

>>> (dd2
.plot.scatter(x="cfs', y='TOBS', c=dd2.DATE.dt.month,
e ax=ax, cmap='hsv', alpha=.5)
)

>>> ax.set_title('Observation Temperature (TOBS) '
'vs River Flow (cubic feet per sec)\nColored by Month')

Method Description
pd.concat(objs, axis=0, join='outer', Combine a list of objs along the specified axis.
ignore_index=False, keys=None,
levels=None, names=None,
verify_integrity=False, sort=False,
copy=True)

311

32. Joining Dataframes

df.set_index(keys, drop=True, Return a dataframe with a new index. The keys
append=False, verify integrity=False) argument can be a column name, a series (or
numpy array) of labels for the index, or a list
column names or series. The drop parameter
indicates whether to remove columns used for the
index. The append parameter allows you to add
additional index levels. You can check for
duplicate index values by setting
verify _integrity=True.
df.join(other, on=None, how='left', Return a dataframe with the df joined with other by
Isuffix="'"', rsuffix='"', sort=False) index names. Can specify how to be 'left’, 'right’,
'outer', or 'inner'. If column names are
overlapping, can specify suffix. Alternatively, can
use on to specify column names from df to join
with index from other. Use df.merge instead.

df.merge(right, how="inner', on=None, Return a dataframe with the df joined with other by
left_on=None, right_on=None, overlapping columns. Can specify how to be 'left’,
left_index=False, right_index=False, 'right', 'outer’, "inner', or 'cross'. Can specify
sort=False, suffixes=('_x', '_y'), specific columns with on. Can specify unique
copy=True, indicator=False, columns to either dataframe with left_on and
validate=None) right_on. Can join on the index with left_index and

right_index. Can validate merge with 'one_to_one'
("1:1'), 'one_to_many' ('1:m'), or 'many_to_one'
('m:1'). "many_to_many' ('m:m') doesn’t do any
checks.

Table 32.1: Chapter Methods

32.11 Summary

Data can often have more utility if we combine it with other data. In the '70s, relational algebra was
invented to describe various joins among tabular data. The .merge method of the DataFrame lets us
apply these operations to tabular data in the pandas world. This chapter described concatenation
and the four basic joins that are possible via .merge.

32.12 Exercises

1. Create a dataframe for employees. It should have:

Index name company
0 Fred AMZN

1 John GOOG
2 Sally GOOG
3 Annie NFLX

Create a dataframe for location. It should have:

312

32.12. Exercises

Observation Temperature (TOBS) vs River Flow (cubic feet per sec)
Colored by Month

-12
100
- 10
80
-8
2 60 | |
= B-6
40 B
-4
20
-2
=
0 100 200 300 400
rfa

Figure 32.6: Scatterplot of temperature against river flow, colored by month.

Index ticker location
0 AMZN Seattle
1 GOOG SF

1. What type of join do we need to do to get the location of each employee?

2. How would you validate the join?

313

Chapter 33
Exporting Data

Most of this book has dealt with exploring data, tweaking data, and visualizing data. In addition,
you may need to share data with others. In this chapter, we will explore some of the mechanisms
for exporting data.

33.1 Dirty Devil Data

In this section, we will revisit the Dirty Devil data. Let’s load the flow and gage height data:

>>> import pandas as pd
>>> url = 'https://github.com/mattharrison/datasets/raw/master '\
'/data/dirtydevil.txt'

>>> df = pd.read csv(url, skiprows=lambda num: num <34 or num == 35,
. sep="\t")
>>> def to_denver_time(df , time _col, tz col):

return (df_

.assign(**{tz col: df [tz col].replace('MDT', 'MST7MDT')})
.groupby(tz col)
[time col]
.transform(lambda s: pd.to_datetime(s)
.dt.tz localize(s.name, ambiguous=True)
.dt.tz _convert('America/Denver'))

)

>>> def tweak river(df):
return (df_
.assign(datetime=to_denver_time(df_, 'datetime', 'tz cd'))
.rename (columns={"'144166 _00060': 'cfs',
'144167 00065': 'gage height'})
.set_index('datetime')

)

>>> dd = tweak_river(df)
>>> dd

agency cd ... gage_height 144167 00065 cd
datetime ..
2001-05-07 01:00:00-06:00 USGS ... NaN NaN
2001-05-07 01:15:00-06:00 USGS ... NaN NaN
2001-05-07 01:30:00-06:00 USGS ... NaN NaN
2001-05-07 01:45:00-06:00 USGS ... NaN NaN
2001-05-07 02:00:00-06:00 USGS ... NaN NaN

315

33. Exporting Data

2020-09-28 08:30:00-06:00 USGS 6.16 P
2020-09-28 08:45:00-06:00 USGS 6.15 P
2020-09-28 09:00:00-06:00 USGS 6.15 P
2020-09-28 09:15:00-06:00 USGS 6.15 P
2020-09-28 09:30:00-06:00 USGS 6.15 P

[639305 rows x 7 columns]

33.2 Reading and Writing

There are a bunch of functions in pandas that deal with ingesting data. They all begin with
read_. Similarly, there are analagous exporting methods on the dataframe object. These exporting
methods start with .to_. We will talk about the common methods for exporting in this chapter.

33.3 Creating CSV Files

The Comma Separated Value (CSV) file is ubiquitous. It has been around since the early 70s. This
format has the benefit of being human-readable, and that is about where the benefits end. There
was no standard for CSV files for a long time. In 2005 a standard was released, but the damage
was already done. As such escaping mechanisms, encoding, header handling, and data types all
suffer. You can see the pandas developers’ attempts to deal with all of these issues when you look
at the interface for the pd.read_csv function. It has over 40 parameters!

To write our data to a file, we can use the .to_csv method. One thing to be aware of is that by
default, pandas will write the index values in a CSV, but when reading a CSV it will create a new
index unless we specify a column for the index:

>>> dd.to csv('/tmp/dd.csv')

Note

If you don’t provide a filename, .to_csv will return the string content that would go into the
file rather than writing the file. We will take advantage of that in this book to examine what
the export looks like.

Let’s look at what the first five lines of the export looks like:

>>> print(dd.head(5).to _csv())
datetime,agency_cd,site no,tz _cd,cfs,144166 00060 _cd,gage_height,14416
2001-65-07 01:00:00-06:00,USGS,9333500,MDT,71.0,A:[91],,

2001-85-07 01:15:00-06:00, USGS,9333500,MDT,71.0,A:[91],,

2001-85-07 01:30:00-06:00,USGS,9333500,MDT,71.0,A:[91],,

2001-05-07 01:45:00-06:00, USGS,9333500,MDT,70.0,A:[91],,

2001-05-07 02:00:00-06:00, USGS,9333500,MDT,70.0,A:[91],,

If we wanted to read this and stick datetime in the index, we could use this code:
>>> dd2 = pd.read csv('/tmp/dd.csv', index _col='datetime"')

Note that CSV files don’t do much type conversion other than trying to convert strings to
numbers. You can use the parse_dates parameter to attempt to convert the index into proper
dates, but I would recommend creating a tweak function and revisiting the section on dealing
with timezones to properly handle this (hint: it will look much like the tweak_river function from
above).

316

33.4. Exporting to Excel

There are a bunch of optional parameters for exporting CSV files, but I normally don’t adjust
them.

33.4 Exporting to Excel

Another commonly used option is exporting the data frame to an Excel spreadsheet. The benefits
of this method are that the world basically revolves around Excel. Everyone was taught how to
use it in Kindergarten, and business schools still teach it today. As such, Excel drives most of the
business world.

Note

You will have to make sure openpyx1 is installed to use Excel support. Simply installing the
pandas library usually will not install full Excel support.

Let’s export the data to Excel:

>>> dd.to _excel('/tmp/dd.x1lsx"')
Traceback (most recent call last):

ValueError: Excel does not support datetimes with timezones.
Please ensure that datetimes are timezone unaware before writing to Excel.

Whoops! That didn’t quite work. We will need to strip the timezone information before
exporting to Excel.

Note that exporting to Excel is a bit slower than writing CSV files. (Also note that Excel reads
CSV files, so if you can deal without the limited formatting and type information that pandas
inserts in an xIsx file, you might be ok with sending out CSV files to your Excel-junkie friends.):

>>> (dd
.reset_index ()
.assign(datetime=1lambda df : df_ .datetime.dt.tz convert(tz=None))
.set_index('datetime')
... .to_excel('/tmp/dd.x1lsx")

2)

Another benefit of Excel is that you can write a spreadsheet that has multiple sheets. In this

example, we write 2010 data to one sheet and 2011 data to another:

>>> yriter = pd.ExcelWriter('/tmp/dd2.x1lsx")

>>> dd2 = (dd
.reset_index ()
.assign(datetime=1lambda df : df_.datetime.dt.tz convert(tz=None))
.set_index('datetime")

el)

>>> (dd2
.loc['2010"':'2010-12-31"]
.to_excel(writer, sheet name='2010")

el)

>>> (dd2

.loc['2011"':'2011-12-31"]

... .to_excel(writer, sheet name='2011")

.)

>>> writer.save()

317

33. Exporting Data

[Read-Only] - Excel Matt Harrison . al

File Home Insert Page Layout Formulas Data Review View Help Q Tell me 1= Share
sy X Calibri -1 - = General - %Conditional Formatting ~ E"Insert > Z ~ éTV
. D Eg ~ B I U~ A A | = v $ - 9 o [Format as Table ~ £ Delete ~ B~ 2~
S e D A~ = <o o (7 Cell Styles ~ {1 Format ~ -
[Clipboard T Font] Alignment] Mumber [Styles Cells Editing ~
i E13 ~ 5 67 v
A B C D E F G H |] K L N |~
l 1 datetime agenw_cr.‘ 5ite_n0| tz_cd cfs |155_000Edage_heiglilﬁ?_OOOES_cd
[| 2 | 2001-05-07 07:00:00 | USGS 9333500 MDT 71 Az[91]
3 | 2001-05-07 07:15:00 |USGS 9333300 MDT 71 A:[91]
1 4 | 2001-05-07 07:30:00 |USGS 9333500 MDT 71 A:[91]
i 5 | 2001-05-07 07:45:00 |USGS 9333500 MDT 70 A:[91]
& | 2001-05-07 08:00:00 |USGS 9333500 MDT 70 A:[91]
4 7 | 2001-05-07 08:15:00 |USGS 9333500 MDT 69 A:[91]
| 8 | 2001-05-07 08:30:00 |USGS 9333500 MDT 70 A:[91]
g | 2001-05-07 08:45:00 |USGS 9333500 MDT 70 A:[91]
10 | 2001-05-07 09:00:00 [USGS 9333500 MDT 70 Az[91]
11 | 2001-05-07 09:15:00 [USGS 9333500 MDT 70 Az[91]
12 | 2001-05-07 09:20:00 |USGS 9333500 MDT 69 A:[91]

Figure 33.1: Excel export of pandas data frame.

33.5 Feather

Here is an option that is a relative newcomer. Feather is a binary file format for persisting columnar
data that is found in data frames. This is not a surprise because the creator of pandas works on it.
Feather tends to be fast, and it keeps type information (for the most part). It is also supposed to
be supported by other languages if you happen to have to deal with processing data in R, Julia, or
others.

Note

You will need to install the feather-format library to leverage this functionality.

Let’s try exporting our data:

>>> dd.to feather('/tmp/dd.fea')
Traceback (most recent call last):

ValueError: feather does not support serializing
<class 'pandas.core.indexes.datetimes.DatetimeIndex'> for the index;
you can .reset index() to make the index into column(s)

Whoops. It looks like we need to convert the index to non-date types:

>>> (dd
.reset_index ()
.to_feather('/tmp/dd.fea')
)

Let’s see how this did in preserving our information:

>>> dd2 = pd.read feather('/tmp/dd.fea')
>>> dd2.set_index('datetime').equals(dd)
True

318

33.6. SQL

Awesome! It looks like this works (with the exception of our index issue). Feather is relatively
quick and supports most datatypes.

33.6 SQL

You can stick a data frame into a SQL table with the .to_sql method. In this example, we will create
a SQLite database and insert our data into a table named dd.

Note
You will need to install sqlalchemy for SQL functionality.

>>> import sqlite3
>>> con = sqlite3.connect('dd.db"')
>>> dd.to sql('dd', con, if _exists='replace')

Let’s read from the database:

>>> import sqlalchemy as sa

>>> eng = sa.create _engine('sqlite:///dd.db"')

>>> sa_con = eng.connect()

>>> dd2 = pd.read_sql('dd', sa_con, index_col='datetime')
>>> dd2.equals(dd)

False
>>> dd2

agency_cd site no ... gage_height 144167 _00065 cd
datetime e
2001-65-07 01:00:00 USGS 9333500 ... NaN None
2001-05-07 01:15:00 USGS 9333500 ... NaN None
2001-65-07 01:30:00 USGS 9333500 ... NaN None
2001-65-07 01:45:00 USGS 9333500 ... NaN None
2001-65-07 02:00:00 USGS 9333500 ... NaN None
2020-09-28 08:30:00 USGS 9333500 6.16 P
2020-09-28 08:45:00 USGS 9333500 6.15 P
2020-09-28 09:00:00 USGS 9333500 6.15 P
2020-09-28 09:15:00 USGS 9333500 6.15 P
2020-09-28 09:30:00 USGS 9333500 6.15 P

[539305 rows x 7 columns]

It looks like we could read the table from the database, but it was not equal to the original data.
Closer inspection reveals that our index with timezone aware dates was stored with timezone data,
but when the data came out from the database, this information was dropped.

Here is an example of using the sqlite3 command-line tool to inspect the database:

$ sglite3 dd.db
SQLite version 3.31.1 2020-01-27 19:55:54
Enter ".help" for usage hints.
sqlite> .schema
CREATE TABLE IF NOT EXISTS "dd" (
"datetime" TIMESTAMP,

"agency cd" TEXT,

"site_no" INTEGER,

"tz cd" TEXT,

"cfs" REAL,

319

33. Exporting Data

"144166 00060 cd" TEXT,

"gage height" REAL,

"144167 00065 cd" TEXT
)i
CREATE INDEX "ix_dd_datetime"ON "dd" ("datetime");
sqlite> SELECT * FROM dd LIMIT 1;
2001-05-07 01:00:00-06:00|USGS[9333500|MDT|71.0]A:[91]]|
sqlite>

If we update the index with timezone information, our dataframe is equal to the original data:

>>> (dd2
.reset_index ()
.assign(datetime=1lambda df : df .datetime
.dt.tz localize('America/Denver', ambiguous=False))
.set_index('datetime")
.equals(dd)
)

True
33.7 JSON

Those who implement backend services often need to serialize data with JavaScript Object Notation
(JSON). The pandas library has a .to_dict method to format data as a dictionary. It also has a
.to_json method which supports exporting data formatted as JSON in multiple layouts.

Let’s try out .to_dict first. While not strictly JSON, they are both dictionary representations
(with JSON being serialized as a string):

>>> obj = dd.to_dict()
There is no corresponding pd.read_dict function. Rather, there is a class method on the data
frame called .from_dict. Let’s see how round tripping works with this method:

>>> dd2 = pd.DataFrame.from _dict(obj)
>>> dd.equals(dd2)
True

Note
Dictionary exports do not support duplicated index names. Unlike .to_json (when called with

orient="'columns' which raises a ValueError), it will silently drop data.

Ok, now on to .to_json:

>>> dd.to_json('/tmp/dd.json.gz"')
>>> dd2 = pd.read_json('/tmp/dd.json")

>>> dd2

agency cd site no ... gage height 144167 _ 00065 cd
2001-05-07 07:00:00 USGS 9333500 ... NaN None
2001-65-07 B67:15:00 USGS 9333500 ... NaN None
2001-05-07 07:30:00 USGS 9333500 ... NaN None
2001-05-07 07:45:00 USGS 9333500 ... NaN None
2001-05-07 08:00:00 USGS 9333500 ... NaN None
2020-09-28 14:30:00 USGS 9333500 ... 6.16 P
2020-09-28 14:45:00 USGS 9333500 ... 6.15 P
2020-09-28 15:00:00 USGS 9333500 ... 6.15 P

320

33.7. JSON

2020-09-28 15:15:00 USGS 9333500
2020-09-28 15:30:00 USGS 9333500

[639305 rows x 7 columns]

>>> dd2.equals(dd)
False

These are not equal because the dates in the index were exported (and converted) to UTC dates
(even though they had America/Denver time information). Let’s put them back into America/Denver:

>>> dd3 = (dd2

.reset_index ()

.rename(columns={"'index':'datetime'})

.assign(datetime=1ambda df_: df_.datetime.dt.tz_localize(tz='UTC
.dt.tz_convert('America/Denver'))

.set_index('datetime')

)

>>> dd3

agency cd ... gage height 144167 00065 cd
datetime -
2001-05-07 01:00:00-06:00 USGS ... NaN NaN
2001-05-07 01:15:00-06:00 USGS ... NaN NaN
2001-05-07 01:30:00-06:00 USGS ... NaN NaN
2001-05-07 01:45:00-06:00 USGS ... NaN NaN
2001-05-07 02:00:00-06:00 USGS ... NaN NaN
2020-09-28 08:30:00-06:00 USGS 6.16 P
2020-09-28 08:45:00-06:00 USGS 6.15 P
2020-09-28 09:00:00-06:00 USGS 6.15 P
2020-09-28 09:15:00-06:00 USGS 6.15 P
2020-09-28 09:30:00-06:00 USGS 6.15 P

[639305 rows x 7 columns]

Let’s check if they are equal now:

>>> dd3.equals(dd)
False

")

Still not. Turns out this is a rounding issue (in the debugging chapter, we will show how to

figure this out):
>>> dd3.round(3).equals(dd)

True

Note

The .to_json method exports dates as epoch integers:
>>> dd.head()

agency_cd ... gage_height 144167 _00065
datetime ...
2001-05-07 01:00:00-06:00 USGS ... NaN
2001-05-07 01:15:00-06:00 USGS ... NaN
2001-05-07 01:30:00-06:00 USGS ... NaN
2001-05-07 01:45:00-06:00 USGS ... NaN
2001-05-07 02:00:00-06:00 USGS ... NaN

_cd

NaN
NaN
NaN
NaN
NaN

321

33. Exporting Data

[5 rows x 7 columns]

>>> dd.head().to_json()[:60]
'{"agency cd":{"989218800000":"USGS","989219700000":"USGS", "

Pandas converts the epoch integers into naive UTC dates (they have UTC wall time, but
have no timezone information).

Method Description
df.to_csv(path or_buf=None, sep=',', Write to a CSV file (or stdout if not specified). Can
na_rep=""', float format=None, specify float_format with '%.3f' (.1234 to .123)

columns=None, header=True, index=True,
index_label=None, mode='w',
encoding="'utf8', compression="infer',
quoting=csv.QUOTE_MINIMAL,
quotechar=""",
line_terminator=0s.1linesep,
chunksize=None, date format=None,
doublequote=True, escapechar=None,
decimal='.", errors='strict',
storage_options=None)
pd.read csv(filepath or buffer, sep=',', Create a dataframe from a CSV file.
header="infer', names=None,
index_col=None, usecols=None,
squeeze=False, prefix="",
mangle_dupe_cols=True, dtype=None,
engine=None, converters=None,
true_values=None, false_values=None,
skipinitialspace=False, skiprows=None,
skipfooter=0, nrows=None,
na_values=None, keep default na=True,
na_filter=True, verbose=False,
skip_blank_lines=True,
parse_dates=False,
infer_datetime_format=False,
keep date col=False, date_parser=None,
dayfirst=False, cache_dates=True,
iterator=False, chunksize=None,
compression="infer', thousands=None,
decimal='.", lineterminator=None,
quotechar='""', quoting=0,
doublequote=True, escapechar=None,
comment=None, encoding=None,
encoding errors='strict', dialect=None,
error_bad_lines=None,
warn_bad_lines=None, on_bad_lines=None,
delim_whitespace=False,
low_memory=True, memory _map=False,
float_precision=None,
storage_options=None)

322

33.7. JSON

df.to_excel(excel writer,
sheet_name='Sheet1', na_rep='",
float_format=None, columns=None,
header=True, index=True,
index_label=None, startrow=0,
startcol=0, engine=None,
merge _cells=True, encoding=None,
inf_rep='inf', verbose=True,
freeze panes=None,
storage_options=None)

pd.ExcelWriter(path, engine=None,

date format=None, datetime format=None,

mode="w', storage_options=None,
if sheet_exists=None,
engine_kwargs=None, **kwargs)

pd.read_excel(io, sheet name=0, header=0,

names=None, index_col=None,
usecols=None, squeeze=False,
dtype=None, engine=None,
converters=None, true values=None,
false values=None, skiprows=None,
nrows=None, na_values=None,
keep_default na=True, na_filter=True,
verbose=False, parse_dates=False,
date_parser=None, thousands=None,
comment=None, skipfooter=0,
mangle_dupe_cols=True,
storage_options=None)
df.to_feather(path)
pd.read_feather(path, columns=None,

use_threads=True, storage options=None)

sqlite3.connect(database, timeout=None,
detect _types=None,
isolation_level=None,
check_same_thread=None, factory=None,
cached_statements=None, uri=None)

sa.create_engine(url, **kwargs)

eng.connect()

df.to_sql(name, con, schema=None,
if exists='fail', index=True,
index_label=None, chunksize=None,
dtype=None, method=None)

pd.read_sql(sql, con, index_col=None,
coerce_float=True, params=None,
parse_dates=None, columns=None,
chunksize=None,)

Write an Excel formatted file or instance ExcelWriter.

Create a class for writing dataframes into sheets.

Create a dataframe from Excel file or dictionary
(mapping sheet name to dataframe) if sheet_name
is a list.

Write a Feather formatted file.
Create a dataframe from a Feather file.

Open a connection to a SQLite database. Use
database=":memory:' to create RAM database.

Create a SQLAlchemy engine from a database
connection string.

Get the database connection from a SQLAlchemy
engine.

Create a SQL table with name from the dataframe.
Store the results in database specified by
connection con. Can specify 'replace' or 'append’
for if_exists.

Create a dataframe from a SQL query.

323

33. Exporting Data

df.to dict(orient="dict', into=dict) Serialize a dataframe into a dictionary. Orientation
can be 'dict' (column to dict of index to value),
'"list' (column to list of values), 'series' (column
to series), 'split' (dictionary with index, columns,
and data keys), 'records' (list of dictionary
(column to value)), 'index' (dictionary of index to
dictionary of column to value).
pd.Dataframe.from_dict(data, Create a dataframe from a dictionary. Orientation
orient='columns', dtype=None, can be 'columns' (like 'dict' in .to_dict) or "index'.
columns=None)
df.to_json(path_or_buf=None, orient=None, Serialize a dataframe to JSON. Orientation can be

date_format='epoch', 'columns' (column to dict of index to value), 'list'
double precision=10, force ascii=True, (column to list of values), 'series' (column to
date_unit='ms', default_handler=None, series), 'split' (dictionary with index, columns,
lines=False, compression="infer', and data keys), 'records’' (list of dictionary
index=True, indent=None, (column to value)), "index' (dictionary of index to
storage_options=None) dictionary of column to value), 'data’' (list of

values), 'values' (values array), 'table' (dictionary
of schema and data). Can change date format with
"iso' (ISO8601).
pd.read_json(path _or_buf=None, Create a dataframe from JSON.

orient=None, typ='frame', dtype=None,

convert_axes=None, convert dates=True,

keep_default dates=True, numpy=False,

precise float=False, date unit=None,

encoding="'utf-8',

encoding errors='strict', lines=False,

chunksize=None, compression="infer',

nrows=None, storage options=None)

df.round(decimals=0) Create a dataframe with decimals rounded to given
places.

df.equals(other) Compares two dataframes if they have the same
shape and values. Columns should have the same
type.

Table 33.1: Chapter Methods

33.8 Summary

There are many formats for exporting data with pandas. As I keep mentioning in this book, you
will want to double-check your data after you have exported it so that you know what is in there.
Some formats, like CSV, lose most type information. Others try to preserve it but may get hung up
on timezones or rounding issues.

33.9 Exercises
With a dataset of your choice:
1. Export the data from a dataframe into a CSV file.

2. Export the data from a dataframe into a SQLite database.

324

33.9. Exercises

3. Export the data from a dataframe into a Feather file.

4. Export the data from a dataframe into JSON.

325

Chapter 34
Styling Dataframes

In this chapter, I will demonstrate how to style a dataframe inside of Jupyter.

34.1 Loading the Data

We are going to use the Dirty Devil dataset for this section.

>>> import pandas as pd

>>> url = 'https://github.com/mattharrison/datasets/raw/master '\
'/data/dirtydevil.txt'

>>> df = pd.read csv(url, skiprows=lambda num: num <34 or num == 35,
. sep="\t")
>>> def tweak river(df):

return (df_

.assign(datetime=pd.to_datetime(df_.datetime))
.rename (columns={"'144166 _00060"': 'cfs',

'144167 00065"': 'gage height'})
.set_index('datetime")

)

>>> dd = tweak_river(df)
>>> dd

agency_cd site_no ... gage_height 144167 _00065 cd
datetime R
2001-05-07 01:00:00 USGS 9333500 ... NaN NaN
2001-05-07 01:15:00 USGS 9333500 ... NaN NaN
2001-05-07 01:30:00 USGS 9333500 ... NaN NaN
2001-05-07 01:45:00 USGS 9333560 ... NaN NaN
2001-05-07 02:00:00 USGS 9333500 ... NaN NaN
2020-09-28 08:30:00 USGS 9333500 6.16 P
2020-09-28 08:45:00 USGS 9333500 6.15 P
2020-09-28 09:00:00 USGS 9333500 6.15 P
2020-09-28 09:15:00 USGS 9333500 6.15 P
2020-09-28 09:30:00 USGS 9333500 6.15 P

[639305 rows x 7 columns]

Now that we have the basic data, I'm going to do some aggregations and column creation. See
if you can go through the following code and figure out what it is doing. I'll explain right after

327

34. Styling Dataframes

showing it, but after going through this book you should start practicing reading code and making
sure that you can understand what it is doing.

>>> import sparklines
>>> agg flow = (dd
#.resample('M') # resample .agg doesn't support named aggregations
.groupby (pd.Grouper(freq="'M"))
.agg(cfs=('cfs', 'median'),
total flow=('cfs', lambda ser:(ser*15*60).sum()),
gage height=('gage height', 'median'),
flow_trend=('cfs', lambda ser: sparklines.sparklines(
ser
.fillna(0)
.resample('2D")
.median()
.fillna(0))
[en
)
.assign(quarterly flow=1lambda df_: df_
.total flow
.resample('Q")
.transform('sum'),
percent_quarterly_flow=1lambda df2_: df2_
.total _flow / df2_.quarterly flow,
off_goal=lambda df3_: df3_.percent_quarterly_flow-.33,
.. cost=lambda df4 : df4 .total flow * .0002)
)
>>> agg flow
cfs total _flow ... off_goal cost
datetime
2001-05-31 47.060 105383700.
2001-06-30 23.00 17843400.
2001-07-31 17.00 7781400.
2001-08-31 52.50 192848220.
2001-09-30 26.00 42819300.

0.525193 21076.7400
-0.185199 3568.6800
.298037 15656.2800
0.462151 38569.6440
-0.154114 8563.8600

[I <> BN < B «» B «»)
|
o

-0.0698571 12144.20658
-0.236716 4895.0820
.428016 13414.6674
-0.205207 2208.4632
-0.212809 2073.9384

2020-05-31 21.25 60721029.
2020-06-30 10.20 24475410.
2020-87-31 10.80 67073337.
2020-08-31 6.32 11042316.
2020-09-30 5.79 10369692.

[« I <> B «» B «» I «» Y
(<)

[233 rows x 8 columns]

There might have been a curveball in here... the sparklines library. Let’s skip that for now and
describe the rest of the chain.

Group by the months in the index (note that I'm using named aggregations and that as the
comment states, the result of the .resample method does not support named aggregations). For
each group, calculate the median of the ¢fs column, calculate total_flow from the the ¢fs column (it
is the 15 minute value, so we multiply it by 15 to get the minutes and 60 to get the seconds), and
create a flow_trend column that uses sparklines.

After grouping, we are going to make some more columns. quarterly flow resamples our
monthly data to the quarterly level and sums it. percent_quarterly_flow divides total_flow by
quarterly_flow. The off_goal column assumes that each month should contribute 33% of the quarterly

328

34.2. Sparklines

water flow and measures how far off we are from that goal. The cost column calculates expense
assuming it costs 2 hundredths of a cent per cubic foot of water.

34.2 Sparklines

A sparkline?! is a small plot drawn without axes or coordinates created by Edward Tufte. The intent
is to show a general tread. The sparklines® library in Python is a Unicode barchart implementation
of this idea.

If you have a series of numbers, you can create a Unicode string that represents them:
>>> import sparklines
>>> gparklines.sparklines(range(10))

[l_-lllllllllj
So let’s revisit this chunk of code:

flow_trend=('cfs', lambda ser: sparklines.sparklines(
ser
.resample('2D"')
.median()
.fillna(0))
(e

We use the cfs column, resample to every two days (remember this series, ser, is data for every 15
minutes for a single month), calculate the median value of river flow, and fill in missing values with
zero. This gives us a series with the median two-day value. We pass this data into the sparklines
library to generate a Unicode bar plot. The sparklines library returns a list with the string inside of
it, so we pull the chart out of the list.

The resulting column looks like this:

>>> agg_flow.flow_trend

datetime

2001-05-31 Ill-lll--l-__
2001-06-30 [| |
2001-67-31 i
2001-08-31 L___
2001-09-30 m__si_llnm
2020-05-31 HulNailNsaannn-_
2020-06-30 ST | | T —
2020-07-31 ___ e ulln
2020-08-31 b __
2020-89-30 ______ sxnniill

Freq: M, Name: flow_trend, Length: 233, dtype: object

34.3 The .style Attribute

Up to this point, most of the results of our chains have been a series or dataframe. The .style
attribute of a dataframe allows you to chain, but you can only chain more styling methods, you

21This creative use of embedding sparklines was inspired by this tweet https:/ / twitter.com / pmbaumgartner/status /108464

2https:/ / github.com / deeplook / sparklines

329

https://twitter.com/pmbaumgartner/status/1084645440224559104
https://github.com/deeplook/sparklines

34. Styling Dataframes

(agg_flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object

'${:,.2f}", 'datetime': '{:%Y/%m}/01',

.format({'cost':
'percent_quarterly flow': '{:.

'off goal': '{:+.1%}",
*{col: '{:.1f}' for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep="'Missing')

%',

)

datetime cfs total_flow gage_height flow_trend quarterly_flow percent_quarterly flow off_goal cost

0 2001/05/01 47.0 105383700.0 Missing sy e 123227100.0 85.5% +52.5% $21,076.74
1 2001/06/01 230 17843400.0 Missing h M 123227100.0 14.5% -18.5% $3.568.68
2 2001/07/01 17.0 7781400.0 Missing B 2434489200 3.2% -29.8% $1,556.28
3 2001/08/01 52.5 1928482200 Missing - 243448520.0 79.2% +46.2% $38.569.64
4 2001/09/01 26.0 428193000 Missing o mm Bl 2434439200 17.6% -154% $8.563.86
5 2001/10/01 540 1349757000 Missing — eeseeeenBEEEl 450483500.0 28.1% -4.9% $26,995.14
6 2001/11/01 104.0 203110200.0 Missing —_— 480483%00.0 42.3% +9.3% $40,622.04
7 2001/12/01 1150 142398000.0 Missing s semem_mmil] 4304535000 29.6% -34% $28479.60
8 2002/01/01 1360 197745300.0 Missing Hellmm = W= 4335257000 31.0% 2.0% $39.549.06
9 2002/02/01 1310 157920300.0 Missing sl 6335257000 24.7% -8.3% $31.584.06
10 2002/03/01 107.0 2828601000 Missing ISy 633525700.0 443% +11.3% $56,572.02
11 2002/04/01 57.0 152018100.0 Missing __ 167027670.0 91.0% +58.0% $30.403.62
12 2002/05/01 12.0 12806010.0 Missing [| - 1670276700 7.7% -25.3% $2,561.20
13 2002/06/01 12.0 2203560.0 Missing m 167027670.0 1.3% -31.7% $440.71
14 2002/07/01 535 199%96200.0 Missing L 4057884000 49% -28.1% $3.999.24
15 2002/08/01 Missing 0.0 Missing 405788400.0 0.0% -33.0% $0.00
16 2002/09/01 80.0 3857%2200.0 Missing | | = 405788400.0 95.1% +62.1% $77.158.44
17 2002/10/01 $7.0 32053500.0 Missing . H 2843064000 11.3% -21.7% $6.410.70
18 2002/11/01 820 36025200.0 Missing | | Bl 2843064000 12.7% -20.3% $7.205.04
19 2002/12/01 87.0 216227700.0 Missing “__- 284306400.0 76.1% +43.1% $43,245.54

cannot update the dataframe. If you want to style the output, you should do that as the last step(s)

of your chain.

34.4 Formatting

One thing you can do with styling is control the formatting. Let’s make the cost column show dollar
signs, change the format of the datetime column, convert percent_quarterly_flow to a percentage, and
and a plus or minus to the off_goal column. This is done with the .format method.

Figure 34.1: Changing the style of the columns.

34.5 Embedding Bar Plots

The next thing we are going to do is embed a bar plot in the cell background. We use the .bar
method for that.

330

34.6. Highlighting

(agg flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object
.format({'cost': '${:,.2f}', 'datetime': '{:%Y/%m}/01',
'percent_quarterly flow': '{:.1%}',
'off goal': '{:+.1%}',
**{col: "{:.1f}" for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep="'Missing')

.bar(subset="cfs', color='#cO@/Tef", vmax=agg flow.cfs.quantile(.95))
.bar(subset="off goal', color=['red', 'green'], align='mid")

.highlight_null(null_color="#fef70c') # wish this was highlight_na
.highlight max(axis=8, color='green')

60 2006/05/01 1330 106303500.0 Missing m HEmew 4120496000 25.7% 7.3% $21.260.70
61 2006/06/01 515 59394600.0 Missing I e 413049600.0 14.4% -186% $11,878.92
62 2006/07/01 440 16191500.0 Missing A 20991000 26.1% -6.9% $3.238.38
63 2006/08/01 420 341631000 Missing mm____m_ BWe 520991000 55.0% 20% $6832.62
64 2006/09/01 1320 117441000 Missing m 620991000 18.9% -141% $2,348.82
65 2006/10/01 1&50(10- Missing = 93.0% -
66 2006/11/01 1320 250493400.0 Missing | . 7.0% 260% $50,098.68
67 2006/12/01 Missing 0.0 Missing 0.0% -330% $0.00
68 2007/01/01 $00 32130000.0 Missing B 5683371000 3.7% 293% $6426.00
69 2007/02/01 1280 319564800.0 Missing — el 568337100.0 36.8% +38% $63,912.96
70 2007/03/01 1500 516642300.0 Missing em e 8563337100.0 59.5% 5% $103,328.46
71 2007/04/01 740 223211700.0 Missing Tl . 3022363500 73.9% % §44.642.34 T

Figure 34.2: Adding bar plots to cfs and off_goal columns. Highlighting missing and maximum values.

The cfs bars are clipped (via vmax) to the 95% quantile, otherwise they don’t show up due to
outliers. The off_goal bars specify two colors to distinguish positive from negative.

34.6 Highlighting

There are a few styling methods to highlight values. You can highlight missing, minimum,
maximum, a range, or a quantile range. Our example highlights missing and maximum values.

34.7 Heatmaps and Gradients

You can shade the background based on the value of the cell. We demoed this in the cross-
tabulation section. Here we will use a red color map to color the cost column. We will set vmax
to indicate that anything over $25,000 is over budget. he background.

Depending on the data, you may want to choose a different colormap. For correlations, you
want to use a diverging colormap. For postive numeric data, you may consider an increasing or
continuous colormap.

34.8 Captions

The .set_caption allows you to specify text for a caption. This will appear before the dataframe.

331

34. Styling Dataframes

(agg flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object
format({'cost': '${:,.2f}", 'datetime': '{:%Y/%m}/01',
'percent quarterly flow': '{:.1%}',
'off goal': '{:+.1%}',
**{col: '{:.1f}" for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep='Missing')
.bar(subset="cfs', color='#cB7fef', vmax=agg flow.cfs.quantile(.95))
.bar(subset="'0ff _goal', color=['red', 'green'], align="mid")
.highlight_null(null_color='#fef78c') # wish this was highlight_na
.highlight_max(axis=8, color='green')
.background_gradient(axis=0, cmap='Reds', subset='cost', vmin=1_0080, vmax=25 000)
.set_caption('Dirty Devil Summary')

Dirty Devil Summary

datetime cfs total_flow gage height flow_trend quarterly_flow percent_quarterly_flow off_goal cost
0 2001/05/01 47.0 105383700.0 Missing s 1232271000 85.5% $21,076.74
1 2001/06/01 230 178434000 Missing | . M 1232271000 14.5% -18.5% $3,568.68
2 2001/07/01 17.0 7781400.0 Missing = 2434489200 3.2% -29.8% $1,556.28
3 2001/08/01 525 192848220.0 Missing | 243448920.0 79.2% b4
4 2001/0%9/01 26.0 42819300.0 Missing o Blesmm 2434489200 17.6% -15.4% $8,563.86
5 2001/10/01 540 1349757000 Missing —eeeeeeenBEEEl 4504835000 28.1% Al $26,995.14
6 2001/11/01 104.0 203110200.0 Missing ooeeeninll mW 4304333000 42.3% +9.3% Ry
7 2001/12/01 115.0 142398000.0 Missing m___Em__ wes_mEl 23804835000 29.6% -3.4% EEYEEYEX]
] 200%/01/01 12340 1977453000 Missing |] - ARARZLRTONN 2310% -20%]

Figure 34.3: Heatmaps set in the cost column. A caption ("Dirty Devil Summary”).

34.9 CSS Properties

The .set_properties method lets you set CSS properties to each cell.

The .applymap method will also let you place CSS properties. You pass in a function that takes
the value of the cell and return a string with the CSS properties for that cell.

Another way to set CSS styling is with the .set_table_styles method. This method allows you
to specify the selector and the properties for the selector.

34.10 Stickiness and Hiding

If you find it annoying to lose the column headers when scrolling down a dataframe, or losing the
index when scrolling to the side, you are in luck. The .set_sticky method will make the headers
stay in place when scrolling. Note however, that you should use call this method at the end of your
chain because if you set some CSS styles after it, you might lose the stickiness.

34.11 Hiding the Index

Finally, you can hide the index. In the image you can see that we have made the index disappear.

Method Description

332

34.11. Hiding the Index

.format(formatter=None, subset=None,
na_rep=None, precision=None,
decimal='."', thousands=None,
escape=None)

.bar(subset=None, axis=0,
color="#d65f5f", width=100,
align='left', vmin=None, vmax=None)

.highlight _max(null color='red',
subset=None, axis=0, props=None)
.highlight null(null _color='red"',
subset=None, props=None)
.background_gradient(cmap="'PuBu', low=0,
high=0, axis=0, subset=None,
text _color_threshold=0.4068, vmin=None,
vmax=None, gmap=None)
.set_caption(caption)

.set_properties(subset=None, **kwargs)

.applymap(func, subset=None, **kwargs)

.set_table_styles(table _styles, axis=0,
overwrite=True)

Return a Styler. formatter can be a string, a callable
that takes a value and returns the string
representation, or a dictionary mapping column
names to Python format specifiers or callables.
subset is a column or list of columns to apply (if
not using a dictionary formatter). Use na_rep to
specify alternate representation for missing
numbers. Use precision to specify floating point
decimal places. Use #ecimal to change decimal
separtor. Use thousands to specify character to
insert for thousands separator. The escape
parameter can specify 'html' or 'latex' to provide
properly escaped cells.

Return a Styler. Draw a bar chart in cell background.
subset is a column or list of columns to apply to. If
you specify a two-tuple for color, the first is for
negative values. width is the percentage of the cell
to use. align defaults to 'left' side, you can
specify 'zero' for the center of the cell, or 'mid"' for
center to right aligned if all values are negative or
(max-min)/2. Use vmin and vmax to clip values.

Return a Styler that highlights maximum values.
You can specify CSS properties with props.

Return a Styler that highlights missing values. You
can specify CSS properties with props.

Return a Styler that highlights background colors
based on values. Use cmap to specify a Matplotlib
colormap.

Return a Styler. Create HTML caption. If using
LaTex, can specify a tuple with full and short
captions.

Return a Styler. Set CSS properties on each cell. You
can specify them as keyword arguments, but will
probably need to use an unpacked dictionary since
many CSS properties have dashes in them (ie:
**{'packground-color': 'red'}).

Return a Styler. Set CSS properties on each cell. The
func takes the current value of the cell and returns
a string with the CSS properties. You can pass
additional arguments to func with kwargs.

Return a Styler. Set CSS properties on table,
columns, rows, or HTML selectors. table styles
can be a list of dictionaries (mapping 'selector' to
CSS selector, and 'props' to CSS properties) or a
dictionary (mapping column names (or index
names if axis=1) to row CSS selectors (a list of the
selector and the property).

333

34. Styling Dataframes

.set_sticky(axis=0, pixel size=None, Return a Styler. Sets columns to sticky if axis=1. Set
levels=None) index to stick if axis=0. Make sure you call this as
one of the last styling operations, otherwise it
might not work.
.hide_index(subset=None) Return a Styler. Hide the index or index values
specified in subset.
Table 34.1: Styling Methods

34.12 Summary

In this chapter, we demonstrated many of the styling features of pandas. There are other features
that we didn’t demonstrate. Feel free to explore those and see if they will be useful to use. We also
demonstrated how to create a sparkplot as Unicode.

34.13 Exercises
With a dataset of your choice:
1. Color the background of the first two columns blue.
Format the numeric values by specifying precision and thousands separator.

Include a bar plot in a column.

Set a background gradient for a column.

S

Make the column headers sticky.

334

34.13. Exercises
(agg flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object
format({'cost': '${:,.2f}', 'datetime': '{:%Y/%m}/01',
'percent_quarterly flow': '{:.1%}',
'off_goal': '{:+.1%}',
**{col: '{:.1f}" for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep="'MNissing')
.bar(subset="'cfs', color='#cO7fef', vmax=agg_flow.cfs.quantile(.95))
.bar(subset='o0ff goal', color=['red', 'green'], align="mid")
.highlight_null(null_color="#fef70c') # wish this was highlight na
.highlight_max(axis=8, color='green')
.background_gradient(axis=0, cmap='Reds', subset='cost', vmin=1 0086, vmax=25 000)
.set_caption('Dirty Devil Summary')
.set_properties(**{'background-color': '#999'}, subset='datetime')
.applymap(lambda val: f'color: "grey"; opacity: 88%; background-color:{"#4b8%ae" if val > 0 else "#c@7fef"}' ,
subset="'cfs')
.set_table styles([{'selector': 'td:hover', 'props': 'background-color: pink; font-size:14pt;'}1)
)
Dirty Devil Summary
datetime cfs total_flow gage height flow_trend quarterly flow percent_quarterly flow off goal cost
105383700.0 Missing Iy 1232271000 85.5% $21,076.74
17843400.0 Missing | . m 1232271000 145% WM185% $3.568.68
7781400.0 Missing _Be 2434489200 32% MM298% $1556.28
192848220.0 Missing B 2434489200 79.2% ‘
42819300.0 Missing mm__ e Il 0232439200 17.6% [M154% $8,563.86
1349757000 Missing — eeeseeenBEEEE 450483900.0 28.1% $26,995.14
203110200.0 Missing ool m 2304335000 42.3% ! $40,622.04
142398000.0 Missing m___mE___wewm mBl 2504339000 29.6% . $28,479.60

Figure 34.4: Using .set_properties to set CSS properties on the datetime column. Notice that the datetime
column is gray. Using .applymap to set CSS properties on the cfs column. Notice that the font and background
of cfs has changed. Using .set_table_styles to set CSS properties on hovering. Notice that when you hover

over a cell, the style gets set.

335

34. Styling Dataframes

(agg flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object
format({'cost': '${:,.2f}", 'datetime’: '{:%Y/%m}/01',
'percent_quarterly flow': '{:.1%}',
'off_goal': '{:+.1%}',
**{col: '{:.1f}' for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep='Missing')
.bar(subset="cfs', color="#c87fef', vmax=agg_flow.cfs.quantile(.95))
.bar(subset="'0ff goal', color=['red', 'green'], align='mid")
.highlight_null(null_color="#fef78c') # wish this was highlight na
.highlight max(axis=8, color='green')
.background_gradient(axis=B, cmap='Reds', subset='cost', vmin=1 080, vmax=25_800)
.set_caption('Dirty Devil Summary')
.set_properties(**{'background-color': '#999'}, subset='datetime')
.applymap(lambda val: f'color: "grey"; opacity: 80%; background-color:{"#4589%ae" if val > 0 else "#cO7fef"}' ,
subset="cfs")
.set_table styles breaks stick headers if it is after
.set_table styles([{'selector': 'td:hover', 'props': 'background-color: pink; font-size:1l4pt;'}1)
.set_sticky(axis="columns")

)
datetime cfs total_flow gage_height flow_trend quarterly_flow percent_guarterly_flow cost *
19%11600.0 Missing -_-_.— 81373500.0 24.5% $3,982.32
7633800.0 Missing ™ 22224600.0 34.3% $1526.76
145%0800.0 Missing = 22224600.0 65.7% $2,918.16

0.0 Missing 22224600.0 0.0%

51785100.0 Missing = 79268400.0 65.3%
27483300.0 Missing J 79268400.0 34.7% $5.496.66
0.0 Missing 79268400.0 0.0% $0.00

140650200.0 Missing mmmm_ W 3110585000 45.2%

783765000 Missing l - 311058900.0 25.2%

92032200.0 Missing ml__ 3110589000 29.6%

356106600.0 Missing — e e . 14857983000 24.0%

$28,130.04

$15,675.30

$18,406.44

$71,221.32

Figure 34.5: Using .set_sticky to make sure that the columns stay visible. You can see that we are looking
at index value 37, but still have the column headers visible.

336

34.13. Exercises

(agg flow
.reset_index()
.style
after this we are not working a a dataframe but a "styler" object
format({'cost': '${:,.2f}", 'datetime': '{:%Y/%m}/01',
'percent_quarterly flow': '{:.1%}',
'‘off_goal': '{(:+.1%}",
**(col: '{:.1f}' for col in ['cfs', 'total flow', 'quarterly flow'l}},
na_rep='Missing')
.bar(subset="'cfs', color='#cB7fef', vmax=agg flow.cfs.quantile(.95))
.bar(subset="off _goal', color=['red', 'green'], align='mid")
.highlight null(null_color="#fef78c') # wish this was highlight na
.highlight_max(axis=8, color='green')
.background gradient(axis=0, cmap='Reds', subset='cost', vmin=1 006, vmax=25 000)
.set_caption('Dirty Devil Summary')
.set_properties(**{'background-color': '#3999'}, subset='datetime')
.applymap(lamhda val: f'color: "grey"; opacity: 80%; background-color:{"#458%ae" if val > O else "#cO7fef"}' ,
subset="cfs")
.set_table_styles breaks stick headers if it is after
.set_table styles([{'selector': 'td:hover', 'props': 'background-color: pink; font-size:14pt;'}1)
.set_sticky(axis="columns")
.hide_index()

Dirty Devil Summary

datetime cfs total_flow gage_height flow_trend quarterly_flow percent_quarterly flow
105383700.0 Missing e 1232271000 85.5%

178434000 Missing _—- 1232271000 14.5%

77814000 Missing B 2434489200 3.2%

1928482200 Missing B 2434489200 79.2%

428193000 Missing -_-_h 243448920.0 17.6%

134975700.0 Missing — eeeeeeenBEEEE 4504839000 28.1%

203110200.0 Missing onmenmmnll =w 2:504337000 42.3%

142398000.0 Missing m___mm__ wews sml 4504832000 29.6%

1977452000 Missing] H 4295957000 21 N%

off_goal cost
$21,076.74
-18.5% $3.568.68
-29.8% $1,556.28
8 o]
$8.563.86
$26,995.14

$40,622.04

$28,479.60

Figure 34.6: Using .hide_index to hide the index.

337

34. Styling Dataframes

viridis

magma

plasma

cividis

Purples

Blues

Reds

Greys

RdBu

PiYG
Spectral
twilight

h

SV

Setl

tab10

Figure 34.7: Select Matplotlib colormaps. Continuous (viridis through cividis). Increasing (Purples through
Greys). Diverging (RdBu through Spectral). Cyclic (twilight through hsv). Categorical (Setl and tab10).

338

Chapter 35
Debugging Pandas

In this chapter, we will explore various techniques for debugging Pandas.

35.1 Checking if Dataframes are Equal

The first technique we will explore is checking whether two dataframes are equal. This is especially
useful after serializing and deserializing data and unfortunately, is a little more difficult than it
should be. We can use the .equals method which will check if two dataframes are equal, but if they
are not, diagnosing the problem is hard.

Let’s step through an example with our Dirty Devil data:
>>> import pandas as pd

>>> url = 'https://github.com/mattharrison/datasets/raw/master '\
'/data/dirtydevil.txt'

>>> df = pd.read csv(url, skiprows=lambda num: num <34 or num == 35,
... sep="\t")
>>> def to_denver time(df , time col, tz col):

return (df_

.assign(**{tz col: df [tz col].replace('MDT', 'MST7MDT')})
.groupby(tz _col)
[time col]
.transform(lambda s: pd.to _datetime(s)
.dt.tz localize(s.name, ambiguous=True)
.dt.tz _convert('America/Denver'))

-)
>>> def tweak _river(df):
return (df_
.assign(datetime=to_denver _time(df_, 'datetime', 'tz cd'))
.rename (columns={"'144166 _00060': 'cfs',
'144167 00065"': 'gage height'})
)
>>> dd = tweak _river(df)
>>> dd
agency _cd site_no ... gage_height 144167 _008065 cd
0 USGS 9333500 ... NaN NaN
1 USGS 9333500 ... NaN NaN
2 USGS 9333500 ... NaN NaN
3 USGS 9333500 ... NaN NaN
4 USGS 9333500 ... NaN NaN
539300 USGS 9333500 ... 6.16 P

339

35. Debugging Pandas

539301 USGS 9333500 ... 6.15 P
539302 USGS 9333500 ... 6.15 P
539303 USGS 9333500 ... 6.15 P
539304 USGS 9333500 ... 6.15 P

[5639305 rows x 8 columns]

Now let’s roundtrip this through JSON and evaluate whether we get the same data back:

>>> dd2 = pd.read_json(dd.to_json())

>>> dd.equals(dd2)

False
Nope, the data is different! Our task is to find out why dd and dd2 are different.
We can quantify the count of different values:

>>> (dd
.ne(dd2)
.. .sum()

cee)

agency_cd 0
site _no 0
datetime 539305
tz_cd 0
cfs 48048
144166 00060 cd 46181
gage_height 125656

144167 00065 cd 105928
dtype: int64

And we can view the percent of different values:

>>> (dd

.ne(dd2)

.mean ()

.. .mul(100)

)
agency_cd 0.000000
site_no 0.006000
datetime 100.000000
tz_cd 0.006000
cfs 8.909244
144166 00060 cd 8.5630568
gage_height 23.299617
144167 00065 cd 19.641576

dtype: floaté64

The pandas library has a function hidden away in the testing namespace that helps a little,
pd.testing.assert_frame_equal. This function is meant to be used for the core developers of pandas
when developing and testing the library, but let’s try it here:

>>> pd.testing.assert frame _equal(dd, dd2)
Traceback (most recent call last):

AssertionError: Attributes of DataFrame.iloc[:, 2]
(column name="datetime") are different

Attribute "dtype" are different

[left]: datetime64[ns, America/Denver]
[right]: datetime64[ns]

340

35.1. Checking if Dataframes are Equal

Ok, it hints that the datetime column has different types. As we saw in the JSON serialization
section, when we serialize, we lose timezone information. Let’s address that and try again:

>>> pd.testing.assert _frame equal(dd,
(dd2
.assign(datetime=dd2.datetime
.dt.tz _localize('UTC")
.dt.tz convert('America/Denver')))

)

In this case, no assertion is raised, it is quiet! However .equals still fails:

>>> dd.equals(dd2
.assign(datetime=dd2.datetime
.dt.tz localize('UTC')
.dt.tz _convert('America/Denver'))

)

False

Let’s try the check_exact parameter for assert_frame_equals:

>>> pd.testing.assert frame equal(dd,
(dd2
.assign(datetime=dd2.datetime
.dt.tz _localize('UTC")
.dt.tz _convert('America/Denver'))),
check_exact=True

o)
Traceback (most recent call last):

AssertionError: DataFrame.iloc[:, 4] (column name="cfs") are different

DataFrame.iloc[:, 4] (column name="cfs") values are different (0.34619 %)

[index]: [®, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...]
[left]: [71.8, 71.8, 71.08, 76.8, 70.0, 69.08, 70.0, 70.0, 70.08, 70.0, ...]
[right]: [71.0, 71.08, 71.08, 70.0, 70.8, 69.0, 70.8, 70.08, 70.0, 70.0, ...]

Itlooks like some of the values in the ¢fs column differ. Let’s examine those with the .ne method.
This method will return a boolean array where the values are not equal in a series:

>>> dd[dd.cfs.ne(dd2.cfs)]

agency cd site no ... gage_height 144167 00065 cd
96246 USGS 9333500 ... NaN NaN
96247 USGS 9333500 ... NaN NaN
96248 USGS 9333500 ... NaN NaN
96249 USGS 9333500 ... NaN NaN
96250 USGS 9333500 ... NaN NaN
538678 USGS 9333500 6.06 P
538728 USGS 9333500 6.06 P
538735 USGS 9333500 6.06 P
538739 USGS 9333500 6.06 P
538753 USGS 9333500 6.06 P

[48048 rows x 8 columns]

Ok, let’s look at the values for c¢fs from row label 96246 from both of the datasets:

>>> dd.loc[96246].cfs, dd2.1oc[96246].cfs
(1.7, 1.7000000000000002)

It looks like we have rounding issues. Let’s address those and check again:

341

35. Debugging Pandas

>>> dd.round(2).equals(
dd?2
.assign(datetime=dd2.datetime
.dt.tz _localize('UTC').
dt.tz convert('America/Denver'))
.round(2)
e)
True
Here is a little function I wrote to help diagnose where dataframes are not the same:
>>> def cmp_dfs(df1, df2, round amt=3):
diff cols = set(dfl.columns) "~ set(df2.columns)
if diff _cols:
print(f'Different columns {diff cols}"')
if df1.shape != df2.shape:
print(f'Different shapes {df1.shape} {df2.shape}')
bad = False
for col in df1.columns:
s1 df1[col]
s2 df2[col]
if sl.equals(s2):
continue
bad = True
if sl.dtype != s2.dtype:
print(f'{col} types differ {s1.dtype} vs {s2.dtype}"')
if s1.dtype == float:
if s1.round(round_amt).equals(s2.round(round amt)):
print(f'{col} has rounding differences'
f'{df1[s1.ne(s2)][col].dropna().iloc[0]} '
f'vs {df2[s1.ne(s2)][col].dropna().iloc[B]}")

else:
print(f'{col} differs {df1[s1.ne(s2)][col].dropna()}")
if not bad:
print('Same")

>>> cmp_dfs(dd, dd2)
datetime types differ datetime64[ns, America/Denver] vs datetime64[ns]

datetime differs O 2001-05-07 01:00:00-06:00
1 2001-05-07 01:15:00-06:00
2 2001-05-07 01:30:00-06:00
3 2001-05-07 01:45:00-06:00
4 2001-65-07 02:00:00-06:00

539300 2020-09-28 08:30:00-06:00

539301 2020-09-28 08:45:00-06:00

539302 2020-09-28 09:00:00-06:00

539303 2020-09-28 09:15:00-06:00

539304 2020-09-28 09:30:00-06:00

Name: datetime, Length: 539305, dtype: datetime64[ns, America/Denver]
cfs has rounding differences 1.7 vs 1.7000000000000002

gage _height has rounding differences 3.28 vs 3.2800000000000002

Feel free to leverage this function and the others described in this section to discover why your
dataframes are not equal.

342

35.2. Debugging Chains

35.2 Debugging Chains

In this section, we will explore debugging chains of operations on dataframes or series. I have
taught thousands of people pandas during my career. I've also seen a lot of pandas code from
clients and students. Almost universally, it is messy code. I get it. I used to write pandas code that
way too. Making liberal use of chaining and creating functions to tweak my data has gone a long
way towards remedying my ails.

I have been a vocal proponent of chaining on social media. Occasionally, I will hear someone
protest that they don’t like chaining. When asked why they usually flounder. Excuses like excess
code, copying data (yes, there are copies, but no more than non-chained pandas), and hard to debug
popup. I don’t buy excess code. In fact I think chaining produces less code. The pandas library is
an in-memory library that works by copying data, this argument is a moot point. Let’s address the
debugging complaint.

I'm going to show a ”“tweak” function that I created to analyze fuel economy data®.

Here is my tweak function:

>>> import pandas as pd
>>> autos = pd.read _csv('https://github.com/mattharrison/datasets/raw/'
.. 'master/data/vehicles.csv.zip')
>>> def to _tz(df_ , time col, tz offset, tz name):
return (df_
.groupby(tz_offset)
[time col]
.transform(lambda s: pd.to_datetime(s)
.dt.tz localize(s.name, ambiguous=True)
.dt.tz _convert(tz _name))

>>> def tweak autos(autos):
cols = ['cityB8', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng_ dscr', 'fuelCostB8',
'make', 'model', 'trany', 'range', 'createdOn',
"year ']
return (autos
[cols]
.assign(cylinders=autos.cylinders.fillna(0).astype('int8"'),
displ=autos.displ.fillna(0).astype('float16'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+"').fillna('20")
.astype('int8"'),
offset=autos.createdOn
.str.extract(r'\d\d:\d\d ([A-Z]{3}")")
.replace('EDT', 'ESTHEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' +
autos.createdOn.str.slice(-4)),
createdOn=1lambda df_: to_tz(df_, 'str_date',
'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS")
)
.astype({'highwayB8': 'int8', 'cityB8': 'intl6',
"combB8': 'int16', 'fuelCostB8': 'intlé6',

Bhttps: / / www.fueleconomy.gov / feg / download.shtml

343

https://www.fueleconomy.gov/feg/download.shtml

35. Debugging Pandas

'range': 'int16', ‘'year': 'intlé6',
'make': 'category'})
.drop(columns=["'trany', 'eng dscr'])
)
>>> tweak _autos(autos)
city08 comb08 highway®8 ... offset str_date ffs
0 19 21 25 ... EST Jan 071 00:00:00 2013 True
1 9 11 14 ... EST Jan 01 00:00:00 2813 False
2 23 27 33 ... EST Jan 01 00:00:00 2013 True
3 10 11 12 ... EST Jan 01 00:00:00 2013 NaN
4 17 19 23 ... EST Jan 01 00:00:00 2013 True
41139 19 22 26 ... EST Jan 01 00:00:00 2013 True
41140 20 23 28 ... EST Jan 01 00:00:00 20613 True
41141 18 21 24 ... EST Jan 01 00:00:00 2013 True
41142 18 21 24 ... EST Jan 01 00:00:00 2013 True
41143 16 18 21 ... EST Jan 071 00:00:00 20813 True

[41144 rows x 17 columns]

Say you came across this tweak_autos function wanted to understand what it does. First of all,
realize that it is written like a recipe, step by step:

e Pull out columns found in cols.
e Create various columns (.assign).
e Convert column types (.astype).

* Drop extra columns that are no longer needed after we created new columns from them
(.drop).

Haters of chaining say there is no way to debug this. I have a few ways to debug the chain. The
first is using comments. I comment out all of the operations and then go through them one at a
time. This comes in really handy to visually see what is happening as the chain progresses. Let’s
look at all four steps with debugging. First pull out the columns:

>>> def tweak autos(autos):
cols = ['city08', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng_dscr', 'fuelCost08',
'make', 'model', 'trany', 'range', 'createdOn',
'year ']
return (autos
[cols]

.assign(cylinders=autos.cylinders.fillna(0).astype('int8'),
displ=autos.displ.fillna(0).astype('float16'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+"').fillna('20")

.astype('int8"),
offset=autos.createdOn

.str.extract(r'\d\d:\d\d ([A-ZI{3}?)")

.replace('EDT', 'ESTHEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' +

autos.createdOn.str.slice(-4)),
createdOn=lambda df_: to_tz(df_, 'str _date',

e S R S S R S s I S

344

35.2. Debugging Chains

'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS")
)
.astype({'highwayB8': 'int8', 'city08': 'intl6"',
'comb88': 'int16', 'fuelCostB8': 'int16',
"range': 'int16', ‘'year': 'intl6',
"make': 'category'})
.drop(columns=['trany', 'eng dscr'])
)
>>> tweak autos(autos)
city@8 comb08 range createdOn
0 19 21 0 Tue Jan 01 00:00:00 EST 2013
1 9 11 0 Tue Jan 01 00:00:00 EST 2013
2 23 27 0 Tue Jan 01 00:00:00 EST 2013
3 10 11 @ Tue Jan 01 00:00:00 EST 2013
4 17 19 @ Tue Jan 01 00:00:00 EST 2013
41139 19 22 0 Tue Jan 01 00:00:00 EST 2013
41140 20 23 0 Tue Jan 01 00:00:00 EST 2013
41141 18 21 @ Tue Jan 01 00:00:00 EST 2013
41142 18 21 @ Tue Jan 01 00:00:00 EST 2013
41143 16 18 0 Tue Jan 01 00:00:00 EST 2013
[41144 rows x 14 columns]
Now let’s look at what comes out after .assign:
>>> def tweak_autos(autos):
cols = ['cityB8', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng_ dscr', 'fuelCostB8',
'make', 'model', 'trany', 'range', 'createdOn',
"year ']
return (autos
[cols]

year
1985
1985
1985
1985
1993
1993
1993
1993
1993
1993

.assign(cylinders=autos.cylinders.fillna(0).astype('int8"'),
displ=autos.displ.fillna(0).astype('float16'),
drive=autos.drive.fillna('Other').astype('category"'),

automatic=autos.trany.str.contains('Auto'),

speeds=autos.trany.str.extract(r'(\d)+"').fillna('20")

.astype('int8'),
offset=autos.createdOn

.str.extract(r'\d\d:\d\d ([A-Z]1{3}?)")

.replace('EDT', 'ESTHEDT'),

str_date=(autos.createdOn.str.slice(4,19) + ' ' +

autos.createdOn.str.slice(-4)),
createdOn=1ambda df _:

'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS"')

)
.astype({'highwayB8': 'int8', 'cityB8': 'intl6"',
'combB8': 'int16', 'fuelCostB8': 'intl6',
"range': 'int16', ‘'year': 'intl6',
"make': 'category'})
.drop(columns=['trany', 'eng dscr'])
)

>>> tweak _autos(autos)

to_tz(df_, 'str_date'

’

345

35. Debugging Pandas

city08 comb08 highway®8 ... offset str_date ffs
0 19 21 25 ... EST Jan 01 00:00:00 20613 True
1 9 11 4 ... EST Jan 01 00:00:08 2813 False
2 23 27 33 ... EST Jan 01 00:00:00 2013 True
3 10 11 12 ... EST Jan 01 00:00:00 2013 NaN
4 17 19 23 ... EST Jan 01 00:00:00 20613 True
41139 19 22 26 ... EST Jan 01 00:00:00 20613 True
41140 20 23 28 ... EST Jan 01 00:00:00 2013 True
41141 18 21 24 ... EST Jan 01 00:00:00 20613 True
41142 18 21 24 ... EST Jan 01 00:00:00 2013 True
41143 16 18 21 ... EST Jan 01 00:00:00 20613 True

[41144 rows x 19 columns]

Changing columns types often doesn’t have a visual impact, so I'll uncomment the last two
steps together:

>>> def tweak autos(autos):
cols = ['cityB8', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng dscr', 'fuelCostB8',
'make', 'model', 'trany', 'range', 'createdOn',
'year ']
return (autos
[cols]
.assign(cylinders=autos.cylinders.fillna(0).astype('int8"),
displ=autos.displ.fillna(0).astype('floatl6"'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+"').fillna('20")
.astype('int8'),
offset=autos.createdOn
.str.extract(r'\d\d:\d\d ([A-Z]{3}D)")
.replace('EDT', 'ESTHEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' +
autos.createdOn.str.slice(-4)),
createdOn=1lambda df _: to tz(df , 'str _date',
'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS")
)
.astype({'highwayB8': 'int8', 'city08': 'intl6"',
'combB8': 'int16', 'fuelCostB8': 'intl6',

'range': 'int16', ‘'year': 'intl6',
'make': 'category'})
.drop(columns=["'trany', 'eng dscr'])
)
>>> tweak autos(autos)
city68 comb08 highwayB8 ... offset str_date ffs
0 19 21 25 ... EST Jan 071 00:00:00 2013 True
1 9 11 14 ... EST Jan 01 00:00:00 2013 False
2 23 27 33 ... EST Jan 01 00:00:00 2013 True
3 10 11 12 ... EST Jan 071 00:00:00 20813 NaN
4 17 19 23 ... EST Jan 071 00:00:00 20813 True
41139 19 22 26 ... EST Jan 01 00:00:00 20613 True
41140 20 23 28 ... EST Jan 01 00:00:00 2013 True
41141 18 21 24 ... EST Jan 01 00:00:00 20813 True

346

35.3. Debugging Chains Part II

41142 18 21 24 ... EST Jan 01 00:00:00 2013 True
41143 16 18 21 ... EST Jan 01 00:00:00 2013 True

[41144 rows x 17 columns]

Commenting out chain operations is an effective debugging technique.

35.3 Debugging Chains Part Il

I won't stop with the debugging techniques. Here’s another one that allows you to look at the
intermediate state after any method call in a chain. Remember that the .pipe method will pass
the current state of a dataframe or series into a function. This function can return anything, but it
normally returns a dataframe or a series.

Imagine a function that just returns the dataframe (or series) that was passed into it, but it
also prints out the representation to the screen. That is what the show function below does. This
function leverages the display function in Jupyter to create an optional HTML header and display
the dataframe as HTML rather than a string version:
>>> from IPython.display import display, HTML
>>> def show(df , rows=20, cols=30, title=None):

if title:
display (HTML(f'<h2>{title}</h2>"))
with pd.option_context('display.min_rows', rows,
'"display.max_columns', cols):
display(df_)
return df_

Let’s stick show into the tweak_autos function right after the new columns are created, but before
we convert the types. The image shows the new output.

Another useful tool during chaining is to inspect the shape of the intermediate dataframes to
ensure that you are not accidentally removing all the rows or that you don’t have a combinatoric
explosion of data following a merge. You could leverage .pipe with a function that prints out the
shape of the data:
>>> def shape(df):

print(df_.shape)
return df_

35.4 Debugging Chains Part 1l

We are on a roll with debugging. Let’s keep going!
Another complaint that people who justify not using chains is that they really want to have the
intermediate states of each operation. For example, they might write the tweak_autos chain like this:

cols = ['city08', 'comb08', 'highway88', 'cylinders', 'displ',
'drive', 'eng_dscr', 'fuelCost88', 'make', 'model’,
"trany', 'range', 'createdOn', 'year']

autos2 = autos[cols]

cyl nona = autos.cylinders.fillna(0)

cyl int8 = cyl nona.astype('int8"')

autos2['cylinders'] = cyl_int8

displ_nona = autos.displ.fillna(0)

displ _float16 = displ_nona.astype('floati6"')

autos2['displ'] = displ_float16

347

35. Debugging Pandas

from IPython.display import display, HTML
def shou(df_, rows=20, cols=30, title=None):
if title:
display(HTML(f'<h2>{title}</h2>"))
with pd.option_context('display.min_rows', rows, 'display.max_columns', cols):
display(df_)
return df_

def tweak_autos(autos):
cols = ['cityB8", 'combB8', 'highwayB8', 'cylinders', 'displ', 'drive', 'eng_dscr',
'fuelCost08', 'make', 'model', 'trany', 'range', 'createdOn', 'year']
return (autos

[cols]

.assign(cylinders=autos.cylinders.fillna(B).astype('int8'),
displ=autos.displ.fillna(@).astype('floatle"),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos. trany.str.extract(r' (\d)+').fillna('20").astype('int8"),
tz=autos.createdOn.str.extract(r'\d\d:\d\d ([A-Z]{3}?)").replace('EDT', 'ESTSEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' + autos.createdOn.str.slice(-4)),
createdOn=lambda df_: to_tz(df_, 'str_date', 'tz', 'US/Eastern'),
ffs=autos.eng_dscr.str.contains('FFS")

.pipe(show, rows=2, title='New Cols')

.astype({'highway®8': 'int8', 'city®8': 'int16', 'comb@8': 'int16', 'fuelCostB8': 'intl6',
'range': 'int16', 'year': 'int16', 'make': 'category'})

.drop(columns=["trany', 'eng_dscr'])

)

tweak_autos(autos)

New Cols
city08 comb08 highway08 cylinders displ drive eng.dscr fuelCost08 make model trany range createdOn year automatic speeds tz strdate ffs
g) Affa Spider Veloce 3 2013-01-01 Jan 0100:00:00
o 19 21 25 4 2000000 Rear-Wheel Drive (FFS) 2000 o o0 5000 Manual 5-spd 0 o Y oL ES False 5 EST oty True
4-Whel or All- Legacy AWD Automatic 4- 2013-01-01 Jan 0100:00:00
41143 16 18 21 4 2199219 Whes! Drive (FFSTREO) 2900 Subaru sue s 0 Ty 78 True 4 EST 2015 True
41144 rows x 19 columns
out[157]:
city08 comb08 highway08 cylinders displ drive fuelCosto8 make model range createdOn year automatic speeds tz strdate ffs
0 19 21 25 4 2000000 Rear-Wheel Drive 2000 & s Spider Veloce 2000 0 2013 DLOLOHI0:00 PoaT False 5 EST Jan010000:00 o
omeo 05:00 2013
1 9 11 14 12 4898438 Rear-Wheel Drive 3850 Ferrari Testarossa 0 2013'01'01002035:9& 1985 False 5 EST Jar\O'lOO‘OQOC;(l)g False
) 23 27 33 4 2199219 Front-Wheel Drive 1550 Dodge Charger 0 2013'01'0100:085:9& 1985 False 5 EST JanOlOO‘DZOC;(;g True
g . B150/B250 Wagon 2013-01-01 00:00:00- Jan 01.00:00:00
3 10 11 12 8 5199219 Rear-Wheel Drive 3850 Dodge v 0 0m00 1985 True 3 EST so1a NN

Figure 35.1: Inserting show function inside of chain to debug intermediate state.

autos2.drop(columns=["'trany', 'eng dscr'], inplace=True)

I left out much of the column updating and type changing, but I think you get the point: most
users pull out a column, mess with it, and finally stick it back in. Anti-chainers claim that this
ability to inspect the state using any of these variables is useful. (Nevermind that the variables just
sit around in global memory wasting space.)

Admittedly, the intermediate state might be useful during development, but that utility quickly
fades away during analysis and also creates a mess. It is just noise.

If you really do want the intermediate state of the dataframe, guess what? You can get that by
leveraging .pipe. Below is a function, get_var, that will create a global variable with the contents
of the intermediate value of a dataframe. Just shim this function into the chain with .pipe:
>>> def get var(df, var_name):

globals ()[var_name] = df
return df

Let’s use get_var to create a variable, new_cols, with the state of tweak_autos immediately after
creating the new columns:

>>> def tweak autos(autos):
cols = ['cityB8', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng dscr', 'fuelCost08',
'make', 'model', 'trany', 'range', 'createdOn',
"year ']
return (autos

348

35.5. Debugging Chains Part IV

[cols]
.assign(cylinders=autos.cylinders.fillna(0).astype('int8"'),
displ=autos.displ.fillna(0).astype('float16'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+"').fillna('20")
.astype('int8"'),
offset=autos.createdOn
.str.extract(r'\d\d:\d\d ([A-Z]{3}")")
.replace('EDT', 'ESTHEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' +
autos.createdOn.str.slice(-4)),
createdOn=1lambda df : to_tz(df_, 'str _date',
'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS")
)
.pipe(get_var, 'new cols')
.astype({'highwayB8': 'int8', 'cityB8': 'intl6',
'combB8': 'int16', 'fuelCostB8': 'intl6',
'range': 'intl16', ‘'year': 'intlé6',
'make': 'category'})
.drop(columns=["'trany', 'eng_dscr'])

)

>>> res = tweak_autos(autos)

Let’s inspect the intermediate state stored in new_cols:

>>> new_cols

city08 comb88 highwayd8 ... offset str_date ffs
0 19 21 25 ... EST Jan 01 00:00:00 2013 True
1 9 11 14 ... EST Jan 01 00:00:00 2013 False
2 23 27 33 ... EST Jan 01 00:00:00 2013 True
3 10 11 12 ... EST Jan 01 00:00:00 2013 NaN
4 17 19 23 ... EST Jan 01 00:00:00 2013 True
41139 19 22 26 ... EST Jan 01 00:00:00 2013 True
41140 20 23 28 ... EST Jan 01 00:00:00 2013 True
41141 18 21 24 ... EST Jan 01 00:00:00 2013 True
41142 18 21 24 ... EST Jan 01 00:00:00 2013 True
41143 16 18 21 ... EST Jan 01 00:00:00 2013 True

[41144 rows x 19 columns]

You can use the .pipe method to debug intermediate states of chained operations.

35.5 Debugging Chains Part IV

Another option for debugging code in Jupyter is to leverage the pdb debugger. In Jupyter
notebook, there are two main options to do this. One is to run the command %debug command
immediately after coming across an exception. The other way to invoke the debugger is to explicitly
invoke the set_trace function.

Let’s look at the first option. I'm going to insert a link into the chain to call an err function that
raises an exception. When we run this, it will raise an exception:

>>> def err(*args):
1/8

349

35. Debugging Pandas

>>> def tweak autos(autos):
cols = ['cityB8', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng dscr', 'fuelCost08',
'make', 'model', 'trany', 'range', 'createdOn',
'year ']
return (autos
[cols]
.assign(cylinders=autos.cylinders.fillna(0).astype('int8"),
displ=autos.displ.fillna(0).astype('floatl6"'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+').fillna('20")
.astype('int8'),
offset=autos.createdOn
.str.extract(r'\d\d:\d\d ([A-Z]{3}D)")
.replace('EDT"', 'ESTHEDT'),
str_date=(autos.createdOn.str.slice(4,19) + ' ' +
autos.createdOn.str.slice(-4)),
createdOn=1lambda df_: to_tz(df_, 'str_date',
'offset', 'America/New York'),
ffs=autos.eng _dscr.str.contains('FFS"')
)
.pipe(err)
.astype({'highwayB8': 'int8', 'city08': 'intl6"',
"combB8': 'int16', 'fuelCostB8': 'intl6',

'range': 'int16', ‘'year': 'intl6',
'make': 'category'})
.drop(columns=["'trany', 'eng dscr'])

>>> res = tweak_autos(autos)
Traceback (most recent call last):

ZeroDivisionError: division by zero

This just raises an exception. But if you run this in Jupyter, you can drop into a debugger after
raising the exception. In a new cell, run the command %debug.
You are now in the debugger. Here is a brief overview of the pdb commands that I find useful:

e h- (help) Show the commands.

1 - (list) List code around break.

* s - (step) Step into function/method.

(
(
(
w - (where) Show where you are in stack.
u - (up) Move up in the stack.

¢ d - (down) Move down in the stack.

e c - (continue) Continue running code.

* (- (quit) Quit running code.

Another mechanism to drop into the debugger is to call the set_trace function. Replace err with
this function:

350

35.6. Debugging Apply (and Friends)

In [*]: fdebug

> <ipython-input-78-3d2e9488ca38=(3b)err()

3 return df_

34 def err(*args):
-——> 35 /

36

37
ipdb> args
args = (city08 comb@2 highwayB8 cylinders displ \
2] 19 21 25 4 2.000P000
1 9 1 14 12 4.898438
2 23 27 33 4 2.199219
3 8 1 12 8 5.199219
4 17 19 23 4 2.199219
41139 19 22 26 4 2.199219
41140 20 23 28 4 2.199219
41141 18 21 24 4 2.199219
41142 18 21 24 4 2.199219
41143 16 18 21 4 2.199219

drive eng_dscr fuelCostB8 nake \

] Rear-Wheel Drive (FFS) 2000 Alfa Romeo
1 Rear-Wheel Drive (GUZZLER) 3850 Ferrari
2 Front-Wheel Drive (FFS) 1550 Dodge
3 Rear-Wheel Drive Nal 3850 Dodge
4 4-Wheel or A11-Wheel Drive (FFS,TRBO) 2700 Subaru
41139 Front-Wheel Drive (FFS) 1900 Subaru
41748 Front-Wheel Drive (FFS) 18560 Subaru
A1 41 A Whanrl aem ET7T WlhaaTl Madoa fccey anon [l N

Figure 35.2: Run the %debug cell magic after executing a cell that raises and exception.

>>> from IPython.core.debugger import set_trace
>>> def err(*args):
set_trace()

Note

While the debugger is running in Jupyter, no other cells can run. Make sure you type c or g to
finish your debugging session before executing other cells.

35.6 Debugging Apply (and Friends)

It can be confusing to keep track of what pandas passes around when you call .apply, .assign,
.groupby(...).apply, .groupby(...).agg, .groupby(...).transform, .pipe, and others. What is getting
passed in? A series, dataframe, group? One answer is to look at the documentation, which is
generally good (although there are some holes). Also, it can be useful to have access to the object
being passed around so you can play with it in Jupyter and figure out what you want your .apply
(or .groupby(...).apply or .groupby(...).agg ...) to do.

We can take a similar approach to debugging with .pipe and create a function to help us. The
debug_var function accepts an item (this is what we want to check). This function will store the
item in the debug_item variable (we can overwrite this if we desire) for future inspection. Then
the function raises a DebugException to prevent further processing. We will pass this function into
.apply.

Here is the function:

>>> class DebugException(Exception):
pass

351

35. Debugging Pandas

>>> def debug var(thing, *, name='debug item', raise ex=True):
globals()[name] = thing
if raise_ex:
raise DebugException
return thing

Let’s use this function to explore how .apply works. What gets passed into the .apply method?
Plug in the function and find out. Let’s use it on the Fuel Economy data:

>>> def tweak autos(autos):
cols = ['city08', 'comb08', 'highway08', 'cylinders',
'displ', 'drive', 'eng dscr', 'fuelCost08',
'make', 'model', 'trany', 'range', 'createdOn',
"year ']
return (autos
[cols]
.assign(cylinders=autos.cylinders.fillna(0).astype('int8"'),
displ=autos.displ.fillna(0).astype('floatl6"'),
drive=autos.drive.fillna('Other').astype('category'),
automatic=autos.trany.str.contains('Auto'),
speeds=autos.trany.str.extract(r'(\d)+').fillna('20")
.astype('int8'),
offset=autos.createdOn
.str.extract(r'\d\d:\d\d ([A-Z1{3}?)")
.replace('EDT"', 'ESTHEDT'),
str _date=(autos.createdOn.str.slice(4,19) + ' ' +
autos.createdOn.str.slice(-4)),
createdOn=1lambda df : to_tz(df_, 'str_date',
'offset', 'America/New York'),
ffs=autos.eng dscr.str.contains('FFS")
)
.astype({'highwayB8': 'int8', 'cityB8': 'intl6"',
'combB8': 'int16', 'fuelCostB8': 'intl6',
'range': 'int16', ‘'year': 'intl6',
'make': 'category'})
.drop(columns=["'trany', 'eng dscr'])

)
>>> autos2 = tweak autos(autos)
>>> autos2.apply(debug var, name='this"')

Traceback (most recent call last):

DebugException

>>> this

0 19
1 9
2 23
3 10
4 17
41139 19
41140 20
41141 18
41142 18
41143 16

Name: cityB8, Length: 41144, dtype: int16

352

35.6. Debugging Apply (and Friends)

Looks like this is a single column. The .apply method will call our function on every single
column.

I've removed the whole stack trace from the exception above, butI try to convince my students
that they should try to understand the stack trace. In a previous section, we talked about the
debugger and how to step through the stack to explore what is going on.

Let’s re-run this, but with the axis=1 parameter to see what gets passed into our function:

>>> autos2.apply(debug var, axis=1)
Traceback (most recent call last):

DebugException

>>> debug_itenm

city08 19
comb08 21
highway08 25
cylinders 4
displ 2.0
drive Rear-Wheel Drive
fuelCost08 2000
make Alfa Romeo
model Spider Veloce 2000
range 0
createdOn 2013-01-01 00:00:00-05:00
year 1985
automatic False
speeds 5
tz EST
str_date Jan 01 00:00:00 2013
ffs True

Name: 0, dtype: object
It looks like it is passing in a row represented as a series.
Let’s try it with .assign:

>>> (autos?
.assign(new_col=debug var)

o)
Traceback (most recent call last):

DebugException

>>> debug_item

city@8 comb08 highwayB8 ... tz str_date ffs
0 19 21 25 ... EST Jan 01 00:00:00 2013 True
1 9 11 14 ... EST Jan 01 00:00:00 20813 False
2 23 27 33 ... EST Jan 01 00:00:00 20813 True
3 10 11 12 ... EST Jan 01 00:00:00 20813 NaN
4 17 19 23 ... EST Jan 01 00:00:00 2013 True
41139 19 22 26 ... EST Jan 01 00:00:00 2013 True
41140 20 23 28 ... EST Jan 01 00:00:00 20813 True
41141 18 21 24 ... EST Jan 01 00:00:00 20813 True
41142 18 21 24 ... EST Jan 01 00:00:00 2013 True
41143 16 18 21 ... EST Jan 01 00:00:00 2013 True

[41144 rows x 17 columns]

353

35. Debugging Pandas

Looks like debug_item is the whole dataframe.
Let’s try it when we call .groupby(...).agg with a dictionary:

>>> (autos2.groupby('make').agg({'city08': debug var}))
Traceback (most recent call last):

DebugException

>>> debug_itenm
Series([], Name: city08, dtype: int16)

Looks like debug_iten is the city08 column.
You get the idea. With the intermediate variable in hand, you should be able to make progress
on your analysis.

Note

In addition to creating a variable, you can also combine this technique with the %debug cell
magic. This will drop you into a debugger at the point that the exception was raised.

35.7 Memory Usage

Because pandas requires that you load your data into RAM, you need to be aware of the size of
your data. Because pandas doesn’t mutate data (in general), you will need some overhead to be
able to work with data. I typically recommend that my clients have 3-10x more memory than the
size of the data they are analyzing.

One way to explore the data is to look at the .info method. Just remember to use the
memory_usage='deep' option so you take into account any Python objects the dataframe might use
(strings for example):
>>> dd.info(memory usage="'deep')
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 539305 entries, @ to 539304
Data columns (total 8 columns):

Column Non-Null Count Dtype

0 agency_cd 539305 non-null object

1 site_no 539385 non-null int64

2 datetime 539305 non-null datetime64[ns, America/Denver]
3 tz cd 539305 non-null object

4 cfs 493124 non-null floaté64

5 144166 00060 _cd 493124 non-null object

6 gage _height 433377 non-null floaté64

7 144167 _00065_cd 433377 non-null object
dtypes: datetime64[ns, America/Denver](1), float64(2), int64(1), object(4)
memory usage: 135.1 MB

Another option is to use the 3rd party library memory-profiler. You can install this with pip:

pip install memory-profiler

If you are using Jupyter, you will want to run install the extension, so you have access to the
%%memit cell magic. Run this command in a cell in Jupyter:

354

35.8. Timing Information

%load ext memory profiler

Now you can leverage the %fmemit cell magic. This will run a cell and track from the operating
system’s point of view how much memory the process has allocated. It also reports how much the
memory usage has grown:
>>> &% memit
>>> dd = tweak_river(df)
peak memory: 304.42 MiB, increment: 254.99 MiB

If you find that you are using too much memory, consider:

e Sampling rows to limit the data
* Only loading columns you need

e Changing types to more efficient types (ie using 'int8' instead of 'int64' when representing
human ages, or using 'category' for categorical data)

* Acquiring more memory (or using a machine with more memory)

35.8 Timing Information

In addition to how much memory your data is using, you probably want your code to run as fast
as possible. Throughout this book, we have emphasized best practices, but we have also seen that
pandas often has two (or three or four) ways of doing something.

My general response when clients ask what is faster is ”it depends”. And that is true. If you
compare two pieces of code and benchmark them on a small amount of data, there is no guarantee
that the fast code will still be faster when bombarded with more data. (Pay special attention to
.apply, .query, and date conversion.)

After saying "it depends”, I follow that up with “benchmark it and see”. You can use the %%t ime
cell magic to measure the clock time of a cell in Jupyter:
>>> fktime
>>> dd = tweak _river(df)

CPU times: user 228 ms, sys: 8.8 ms, total: 237 ms
Wall time: 235 ms

Another cell magic that provides timing information is %%timeit. This will run the cell a few
times and give you the mean and standard deviation of the runtime:
>>> f%timeit
>>> dd = tweak _river(df)
233 ms + 9.11 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

Method Description

df.equals(other) Compares two dataframes if they have the same
shape and values. Columns should have the same
type.

df.eq(other, axis='columns', level=None) Return dataframe with same index and columns but

boolean values indicating whether values are the
same elementwise.

df.ne(other, axis='columns', level=None) Return dataframe with same index and columns but
boolean values indicating whether values are
different elementwise.

355

35. Debugging Pandas

pd.testing.assert frame equal(left, Utility function to determine if two dataframes are
right, check dtype=True, the same. Can change numeric tolerance with rtol
check_index_type='equiv', (relative tolerance) and atol (absolute tolerance).

check_column_type='equiv',

check frame type=True,

check _names=True, by _blocks=False,
check exact=False,
check_datetimelike_compat=False,
check categorical=True,

check like=False, check freqg=True,
check_flags=True, rtol=1e-05,
atol=1e-08, obj='DataFrame')

df.round(decimals=0) Create a dataframe with decimals rounded to given
places.

.pipe(func, *args, **kwargs) Apply a function to a dataframe. Return the result of
function.

IPython.display.display(*objs, Displays objs in Jupyter.

include=None, exclude=None,
metadata=None, transient=None,
display_id=None, **kwargs)

df.info(verbose=None, buf=None, Print summary of dataframe to stdout. Use
max_cols=None, memory usage=None, memory_usage="'deep' to show object column
show_counts=None) memory usage.

Table 35.1: Chapter Methods

35.9 Summary

In this chapter we have shown various techniques for understanding what is happening when
you use pandas. One of the keys to being successful with pandas is to understand what operations
do to your data and be able to validate that the operation worked as you expected it to. We also
showed how to profile memory usage and timing.

35.10 Exercises
With a dataset of your choice, create a tweak function to perform a chain of operations.

1. Use the debugger to step into the chain of your tweak function.
2. Capture an intermediate state of your chain into a variable.
3. Time how long the tweak function takes to run.

4. Determine how much memory the tweak function needs to run.

356

Chapter 36

Summary

Thanks for learning about the pandas library. Hopefully, as you have read through this book, you
have begun to appreciate the power in this library. You might be wondering what to do now that
you have finished this book?

I've taught many people Python and pandas over the years, and they typically question what
to do to continue learning. My answer is pretty simple: find a project that you would like to work
on and find an excuse to use Python or pandas. If you are in a business setting and use Excel, try
to see if you can replicate what you do in Jupyter and pandas. If you are interested in Machine
Learning, check out Kaggle for projects to try out your new skills. Or simply find some data about
something you are interested in and start playing around.

For those who like videos and screencasts, [offer a screencast service called PyCast** which has
many examples of using Python and pandas in various projects.

As pandas is an open source project, you can contribute and improve the library. The library is
still in active development.

2https:/ /pycast.io

357

https://pycast.io

About the Author

Matt Harrison has been using Python since 2000. He runs MetaSnake, a Python and Data
Science consultancy and corporate training shop. In the past, he has worked across the domains
of search, build management and testing, business intelligence, and storage.

He has presented and taught tutorials at conferences such as Strata, SciPy, SCALE, PyCON,
and OSCON as well as local user conferences. The structure and content of this book is based on
first-hand experience teaching Python to many individuals.

He blogs at hairysun.com and occasionally tweets useful Python related information at
@__mharrison__.

359

Index

Index

'category’, B2,
'string' series, Bl
+, 27
..., 13
T,
.__add__, P7
.__iter_, B0

.add, B0, B1

.add (dataframe),
.add_categories,
.agg, B3, B4,
.agg (dataframe), 164
.aggregate,

.all,

.any, B, 105

.apply, 6,

.apply (Series), A5,

.apply (dataframe), 166
.apply (generalize values), 8§
.applymap,

.as_ordered,

.asfreq,

.assign,

.assign (example),

.astype, [I7, 1, B9, 1, 3, BT, [[34,
.astype (convert to ordered category),
.astype (example),
.astype(category), 19

.autocorr, B6

.backfill,

.background_gradient,

.bar, B30

.barh,

.bfill, [07,

.box,

.capitalize,

.casefold,

.cat, R0, pQ, 137

.cat.add_categories,

.cat.as_ordered,
.cat.categories,
.cat.codes,
.cat.ordered, 21,
.cat.remove_categories,
.cat.remove_unused categories,
.cat.rename_categories,
.cat.reorder_categories, 1,
.cat.set_categories,
.categories,

.ceil, [l01]

.center,

.clip, b2,

.codes,

.contains, PO
.convert_dtypes, B9, i3
.corr, B6

.count, Bd, PO,

.cov, B6

.cumsum,

.date, [101]

.day, [[01]

.day_name, P9, 101
.dayofweek, 107

.dayofyear, 107
.days_in_month, [07]
.daysinmonth,

.decode,

.describe,

.div, BT

.div (dataframe),

.drop (example),
.drop_duplicates, p4

.drop_duplicates (Series),
.drop_duplicates (dataframe), 190

.dropna, 109
.dropna (example),

361

Index

.dt, 1,
.dt.tz_convert, P7,
.dt.tz_localize,
.dtype,
.duplicated, 160
.encode,

.endswith,

.€q,

.equals,

.extract, B4,
.extractall,

fFi11, [07,
.fillna, BQ, [L06,
.fillna (Series),
.fillna (example),
filter, [/6,

.filter (example),
.filter (on groupby), R61
.find,

.findall,

first,

.floor, [L01]

.floordiv, BT

.format,

.ge,

.get,

.get_dummies,
.get_group,

.groupby,
.groupby (add timezone),
-8t

.head, [/, 8,
.hide_index,
.highlight gradient,
.highlight _max,
.highlight_null,
.hist,

.hour, [101]

.idxmax (example),
.iloc, 3, 44,

.iloc (dataframe), P02
.iloc[idx] (Series),
.index, [, b3, /8,

.info,
.info (example),

.interpolate, p2, 107,

.interpolate (Series),
.interpolate (example),

362

.is_leap_year, 107
.is_monotonic, B6
.is_monotonic_decreasing,
.is_monotonic_increasing, B3,
.is_month_end, P9, 101
.is_month_start, 101]
.is_quarter_end, [01]
.is_quarter_start, 107
.is_unique, B3,
.is_year_end, [101]
.is_year_start, [I01]
.isalnum, PO

.isalpha,

.isdecimal,

.isdigit,

.islower,

.isna, 19, [105

.isna (dataframe),
.isna (timeseries example), @
.isnumeric,

.isspace,

.istitle,

.isupper,

.iteritens, 63
.iterrows, 63
.itertuples, 163

.join,

.kde,

.kurtosis,

.last,

.le, B1l

.len,

.line,

.Ljust,

.loc (Series), b

.1loc (dataframe), P05
.1loc (partial dates), 10§
.loc[idx] (Series),
.lower, B2,

strip,

1t, B1

.match, PO

.max, B6,

.mean, B3, B4,

.mean (percentage trick), B4
.median, B6,

.melt, P67, P69
.memory_usage, (0,

Index

.memory_usage (dataframe),
.merge, B09
.microsecond, [[01]
.min, B6,
.minute, 107
.month, 01l
.month_name, 07
.mul, BT
.name, b5
.nanosecond, 07
.nbytes, A0
.ne, BT,
.nearest,
.ngroups,
.normalize, P, 107
.nunique, B6,
.ohlc,
.ordered,
.pad, PO,
.partition,
pipe,
.pipe (example),
.pipe (get plot colors),
.pivot_table,
.plot,
.plot (dataframe),
.plot.area (dataframe),
.plot.bar,
.plot.bar (dataframe),
.plot.barh (dataframe),
.plot.box (dataframe),
.plot.density (dataframe),
.plot.hexbin (dataframe),
.plot.hist (dataframe),
.plot.kde (dataframe),
.plot.line, 127,
.plot.1line (dataframe),
.plot.pie,
.plot.pie (dataframe),
.plot.scatter (dataframe),
.pow, B1]
.prod, B4,
.quantile, B3, B4,
.quarter, [01]
.query, 01, 90
.radd, B1]
.rank, b5

BT

.rdiv,

.read_html,

.reindex, [/7,
.remove_categories,
.remove_unused_categories,

.rename, b3, /8,

.rename (dataframe), 199

.rename (example),
.rename (set index), 103
.rename_categories, 137,
.reorder_categories,
.repeat,

.replace, b6, B8, PO,
.replace (Series),
.replace (example),
.resample, R95
.reset_index, p5, 8, 199,
.rfind,

.rfloordiv, B1l

.rindex,

.rjust,

.rmul, BT

.rolling, [[10,
.round, 107

.rpartition,

.rpow, B1l

.rsplit,

.rstrip,

.rsub, BT

.rtruediv, B1

.sample, 6, /8,
.savefig,

.second, 107

.sem, B4,
.set_caption,
.set_categories,
.set_index, 195
.set_properties,
.set_sticky,
.set_table styles,
.set_xticklabels,
.set_xticks,
.set_ylabel,

.shift, 109

.size, B6,

.skew,

.slice, B4,
.slice_replace,

.sort_index, b4, [/8, 195

363

Index

.sort_index (Series),

.sort_values, b3, 193

.sort_values (Series),

.split, B, PO

.stack,
.startswith,

.std, Bg,
.str, P1,
.str.capitalize,
.str.casefold,
.str.cat,
.str.center,
.str.contains,
.str.count,
.str.decode,
.str.encode,
.str.endswith,

.str.extract, B4,

.str.extract (example),

.str.extractall,
.str.find,
.str.findall,
.str.get,
.str.get_dummies,
.str.index,
.str.isalnum,
.str.isalpha,
.str.isdecimal,
.str.isdigit,
.str.islower,
.str.isnumeric,
.str.isspace, P(
.str.istitle, PO
.str.isupper, P
.str.join, PO
.str.len,
.str.1just,
.str.lower,

.str.lstrip,
.str.match,

.str.normalize,
.str.pad,
.str.partition,
.str.repeat,
.str.replace, B,
.str.rfind,
.str.rindex,
.str.rjust,

=EE

364

.str.rpartition,
.str.rsplit,
.str.rstrip,
.str.slice, B,
.str.slice_replace, PQ
.str.split, B5,
.str.split (example),
.str.startswith,
.str.strip,
.str.swapcase,
.str.title,
.str.translate,
.str.upper,
.str.wrap,
.str.zfill,
.strftime, 100, [0
.strip,

.style,

.sub,

.sum,

.sum (count trick), B4
.sum (dataframe),
.swapcase,
.swaplevel,
.tail, 76, /8,
.time, 10T

.timetz, 0]

.title, B0

.to_csy,

.to_dict,

.to_excel,
.to_frame, i2, 43
.to_list, A2
.to_numpy, 2, A3
.to_period, 107
.to_pydatetime, I01]
.to_sql,
.transform,
.transform (add timezone),
.translate,

.transpose,

.truediv, B

.tz, [101]

.tz_convert, Pp7, [l01],
.tz_localize, [I0]]

.upper,

.value_counts, [,
.values, §2, 13

Index

.var, B6,
.week, 107
.weekday, [L01]

.weekofyear, [[0T

.where, [6,

.where (Series),

.where (example),

.where (generalize categories),
.where (truth table),

.wrap,

.year, [101]

.zfill,

: (row or column slice),

<NA>, [7

>>>,

@ (query variable),
%%memit,

%%t ime,

%etimeit, A5,
%debug,

%load_ext, B7
%matplotlib inline,
%prun, B7

~ (invert), BT, 4§

add, B1]

add (dataframe),

Add timezone to dates,
adding color to scatter plot,
adding rows, B0T

agg, B3, B6,

agg (dataframe),

aggfunc,

aggfunc (example),
aggregate,

Aggregate method,
aggregate methods, B4
Aggregate property, B3
aggregation strings, B3
aggregation with dictionary, 164
aggregation with multiple reductions, B5
aggregation with tuple,
aggregations,

aggregations per column, P48
aliasing, 19

align index, [16(

align the index,

all,

anaconda, B
anchoring offset alias,
annual aggregations, 297

any, BG, 105

apply, 6,

apply (dataframe), 166
apply (Series),
apply to a row of a dataframe,
applymap,

apt-get,

area (dataframe),
as, 19

as_index,
as_ordered,

ascending order, 193
asfreq,

assert frame equal,
assign,

assign (example),
astype, B9, 1,
astype (example),
attribute,

attributes of series, P4
autocorr,

average of bin ranges,
axes,

axis, [[3, 14

axis 0 and 1,
axis=1, 302

back fill, 107

backfill,

background_gradient,
bar (dataframe),

bar plot,
bar plots in dataframe cells,
barh,

barh (dataframe),
bfill, [07,
binned data, B5
binning data, f9

boolean array, [T§, g, 70, ROG

boolean conversion,
both,

box (dataframe),
boxplot, P93

boxplot,
broadcasting,

365

Index

by calculations, 244

calculate percentage trick, B4
capitalize,

capture group, b7
cardinality,

casefold,

cat, G, pg,

CatBoost,

categorical (binning), B9
categorical type, B2
CategoricalDtype, R0, £2,
categories,

categories,

category, 19

category types, i

ceil,

center,

chaining, B1,

chaining .where, 9

change index labels, p3
change offset alias rule, P95
changing multi-index levels,
check_exact,

checking equality of dataframes, B39
clip,

clipping data,

closed interval, p§, P03
cmp_dfs,

codes,

color background,
coloring scatter plot,

colormap,
column formatting,

column indexer, P04

column joining, B03

column specific aggregations, P48
combinatoric explosion, P8, [,
combining offset aliases, 296
command prompt,

compare two dataframes, 342
concat, 0T

concatenating columns, B02
concatenating rows, B01|

conda, f

conform the index, ['7]

contains,

conversion methods,

366

convert dates to UTC, P7
convert to boolean,

convert to category,
convert to Int64 bug,

convert types,

convert wide data to long data,
convert_dtypes,

Coordinated universal time, P3
corr, B6

count, B6, PQ,

count, 165

count missing values, i9
count of criteria trick, B4

counts of columns,
cov, B6

Creating CSV files,
cross product,
crosstab, P63

Csv,

CSV file non-numeric characters, 85
cumulative operations, [[19

custom fonts in plots,

custom groupby function,

cut, B9

cython, B7
dashes, Bj

data structures, [l]
DataFrame,

DataFrame, [

dataframe filtering, P0(
dataframe from NumPy,
date, [L01]

date index, [[05

date slice, 10§

Date theory, P3

dates as index,

day, [[0]
day_name, 107

dayofweek,

dayofyear,

days_in_month, [[0]]

daysinmonth, [0]

debug_var,

debugger,

debugging apply,

debugging chains,
debugging intermediate states,

Index

debugging with .pipe,
decode,

deep memory usage, i,
deep=True, i(

density (dataframe),
descending order,

describe,

diagnose where dataframes are different,
dictionary aggregation,
dictionary comprehension, [[53
dir, P4

display,

div, Bl

div (dataframe),

DPI,

drop (example),

drop missing values, [09
drop_duplicates, b4
drop_duplicates (dataframe), 90
drop_duplicates (Series),
dropna, 109

dropna (example),

dtype,

dtype="category', [9

dummy columns,

dummy columns to single column, 233
dummy encoding,

dunder methods, 7

duplicate data, p4

duplicate index alignment, l60

encode,

endswith,

epoch,

eq, B1

equal sized buckets, B9
equals,

exact match filter index,
Excel exporting,
expand=True, BY
Exporting CSV,
exporting data,
Exporting to Excel,
expression, [/3

extract, B4,

extract (example),
extractall,

False, B

£fi11, 107,

figsize,

fill_value,

filling in missing data (timeseries), P91
fillna, B0, 104,

fillna (example),

fillna (Series),

filter,

filter (example),

filter groupby, R61]

filtering dataframes, P0(
filtering parts of groups, P60
find,

findall,

finding non-numeric characters in CSV, B5
fine grain frequency,
finfo, 40

first,

first item in sequence, 197
flatten columns,

flatten index,

floor,

floordiv, B

font for plotting,

for each calculations, P44

for loop, 163

for loop (series),

format,

forward fill, T07

fractions of missing data,
frequency counts,

Fuel Economy dataset, P3
function (grouping with),
functions with .1oc, [

ge, B1

generalize categories, 4§,
generalize values, 1§

get,

get_dummies, PQ,
get_group,

get_var, B48

global variable,

group (regular expression), 7
group data,

group date by interval,
groupby,

groupby (add timezone),

367

Index

groupby filtering, P6(

grouping by a date column, 298
grouping by functions,
grouping by multiple columns, 250
grouping categoricals,
grouping with categoricals,

gt, B1

half-open interval,
head, [76,

heatmap,
hexbin (dataframe),
hexbin plot,

hide_index,

hierarchical columns,
hierarchical cross tabulation, P63
hierarchical index,

highlight line in plot,
highlight_gradient,
highlight_max,

highlight _null,

hist,
hist (dataframe),
histogram,

horizontal bar plot,

hour, 107
HTML output,

idxmax (example),

if else vectorization, A§

if/ else in pandas,

iinfo, A0

iloc, 3,

iloc (dataframe),

iloc with a function (dataframe), P04
import, 19

include all rows, R04

index,

index, [[3-15

index (with date), 105

index alignment, 28§, 160

index axis,

index filter,

index joining,

index slicing,

index sorting, b4

indexing by name (dataframe), 205
indexing with a function, [/1,

368

indexing with an index, p9
indexing with boolean array,

indicator,
info,
info (example),

inner join, B03, B09
insert series as index, b3
installing pandas, B

Inté4, [[7,

int64,

intermediate states,
interpolate, p2, [07,
interpolate (example), R91|
interpolate (Series),
is_leap_year, [I01]
is_monotonic, B6
is_monotonic_decreasing,
is_monotonic_increasing, B3,
is_month_end, [0T
is_month_start, 101
is_quarter_end,
is_quarter_start, [101]
is_unique, B3,
is_year_end, 107
is_year_start, [[01]

isalnum,

isalpha,

jsdecimal,

isdigit,

islower,

isna, 105

isna (dataframe),

isna (timeseries example), 290
isnumeric,

isspace, PO

istitle,

isupper,

item in sequence (first), 197
iteration,

iteritems, 63

iterrows, [63

itertuples, 163

JetBrains data cleanup,
join, PO, B0

join indicator,

Joining data, B09

joins, B0Z

Index

Jupyter, [

Jupyter plotting,

kde,

kde (dataframe),

keep first of sequence, [19]]

kernel density estimation plot,
key function (sorting), 194
kurtosis, B6

label axis,

labels, [14

lambda,

lambda (example),
lambda function, /3
last,

le, Bl

left join,
left_only,

legend location,
len,

limit categories, [130
Line,

line (dataframe),
line plot, 26,
ljust,

load Cython, B7
loading data, P3

loc (dataframe), 05
loc (Series),
locale,

long data, P67

lower, b2, B2,
Istrip,

1t, BT

machine learning for missing values,

magic methods, P7

many to many, B07

margins, P63

mask, [18, 44

match,

math methods (dataframe),
Matplotlib,

matplotlib colormaps,

max, B6,

max_columns, 272

maximum category,
maximum column for a row,

maximum index for a column, 232
mean, B3, B4,

median, B6,

melt, P69

memit,

memory_profiler,
memory_usage, 0,

memory usage (dataframe),

merge, B09

merge indicator,
merge validation, B07
MergeError, B07
method,
microsecond, [[01]

min, B6,

min_rows, R72

minimum category,
minute, 107

missing data, 19, B0,
missing data (in time series),
missing values,
monotonically increasing index, [99
month,

month_name, 107

monthly behavior, P92

move legend,

mul, B1]

multi-index, P50
multiple aggregations, B
multiple functions (aggregating with),

named aggregations, 249
NaN, 1§

nanosecond, 107

nbytes, (]

ne, B1,

nearest,

negative index, /3
ngroups,

nominal,

normalize, P, l07,
not a number, [[§
Notebook,]

np.finfo, i

np.iinfo, (0

np.invert, B1

np.logical and, Bl
np.logical_or, B]

369

Index

np.select, 9, b0, pd.testing.assert_frame_equal,
np.where (example), pd.to_datetime, {3, B3
NULL, [ig pdb,
nullable integer type, [[7 percent of missing data,
NumPy, 7, percentage of,
NumPy (select), #9 pie (dataframe),
nunique, B6, pie plot,
pip, b

object series, BT pipe
observed, i pipe (example),
observed=True, pipe (get plot colors),
offset alias, 295 pivot data,
offset alias anchor, pivot table
offset alias combination 8 33 613, B9

i , plot, [I15, 123, P13, P19
offset alias rules, P95 lot 1%1- b1

: P g-—
offset alias table, lot stvles

hlc lot tifle, [
ohlc, plot title,
one to many, B07 plot.line,
one to one, B07 plotting,
t lidation, B10 i
one to one merge validation, plotting .value_counts,
operator methods, pow, B
ordered, predict missing values,
dered categories, 2,
ordered categories, prepare data for machine learning,
ordma.ll,. Presidential data,
outer join, prod, B,
outliers, p2 profile code, B7
ad, B property, P9
prun, B7

Panel, 1] - oTeT
partial date slice, pytz.all timezones,
partial date slicing, qeut, B9
partial string slice, quantile, B3, B8,
partition, quantile discretization, p9
pd.CategoricalDtype, i3, quarter, 01

pd.concat, B0 :
quarterly aggregations, P97
pd.crosstab, P63 query, 0T

pd.cut, B9, query variable,

pd.cut (Series),

pd.get dummies, 233 radd,

pd.Grouper, ranges, Bj
pd.options.display.max_columns, P72 rank, @
pd.options.display.min_rows, P72 rdiv,

pd.qcut, B9, re-ordering multi-index levels,
pd.qcut (Series), read_csv, 23,

pd.read_csv, 23, read_sql,

pd.read_html, recipe,

pd.read_sql, regular expression, b7, B4
pd.Series, R regular expression index filter,

370

Index

reindex, /7
relationship between two columns, P19
Remove timezone information,

remove_categories,
remove_unused_categories,

rename, p3
rename (dataframe), 199

rename (example),
rename (set index), 105
rename index, 99
rename_categories,
reorder_categories, R0,

repeat,

replace, bg, B8, B0,
replace (example),
replace (Series),
resample,
resample, 95

resampling time series,

reset_index, b5, 199

rfind,
rfloordiv, B1l

right join,
right_only,
rindex,

rjust,

rmul, B

rolling,
rot,

rotate labels,

rotate plot labels,
round, L01]

row axis,

row indexer, P04
rpartition, PO

rpow, BT

rsplit,

rstrip,

rsub, BT

rtruediv, B1

running sequence,

sample, [/6,
saving plots,

scalar (result from loc), pg
scatter (dataframe),
scatter plot,

Seaborn, P93

Seaborn heatmap,
searching, B4

seasonality, P92

second, 107

select (NumPy), B9,
sem, B4,

Series, 14

Series, [1]

series, [I3

Series (Constructor), 21
series attributes, P4

series sorting, 3
set_caption,
set_categories,
set_index, 195
set_properties,
set_sticky,
set_table_styles,
set_trace, B49
set_xticklabels,
set_xticks,

set_ylabel,
SettingWithCopyWarning,
shift, [[09

show,

Siena College,

size, B4,

skew,

slice, B6,

slice all rows, R04

slice directly off of .str,
slice index by name, 194
slice_replace,

slicing dates, 106

slicing string index, 207
slicing the index,
slicing time series, 286
slicing with duplicate labels,
sort index before slicing, 07

sort_index, b4, 195

sort_index (Series),

sort_values, b3, 193

sort_values (Series),
sorting columns, 195
sorting the index, [[95

source data,
special methods, P7

specify column type,

371

Index

split, B5, B0

split (example),

SQL,

stacking columns into the index,
startswith,

statement,
std, Bg,

str,

strftime, {00, [0

string types, 1]
strings for transform,

strip, PO

style,

styling plots,

sub,

subset (duplicates), 190
substring filter index,
substring slicing,

sum,

sum (dataframe), 163
summarize by group,
summary statistics,
survey data, B5,
swapcase,

swaplevel,

swapping multi-index levels,

tail, /6, 155

testing.assert _frame_equal,
tidy data,

time, 101,

time series, [[05

timeit,

timetz, 107

timezone, 284

Timezone (remove),
title,
title plot,

to_dict,

to_excel,

to_frame,

to_list, B2

to_numpy,

to_period, 107

to_pydatetime,

to_sql,

transform,

transform (add timezone),

372

transform strings,
translate,
transpose,

True, B5

truediv, B1l

truth table (.where),

tuple aggregation, [[64

tweak function,
tweak function (example),
tweak siena pres,

type conversion, {2

tz, [I01]

tz,

tz_convert, 7, [[07,

tz_localize, [lO1]

undo dummy columns, 233
unmelt data,

unordered categories,
updating a series, 1§

upper, B2,

US Fuel Economy dataset, 23
UTC, B3

UTC dates, P§

utc=True, Py

validate (example),
validate (merging),
validate .where,
validate merge, 07
value_counts, i,
values, 2

values, [14

var, B8, 115

vectorization,

viewing data,
viridis,

virtualenv,
visualize time series, 28§

week, [[0]

weekday, [[01]

weekly aggregations, 297
weekofyear, 101l

where, 46,

where (example),
where (Series),

wide data, P67

wrap,

Index

year,
zfill,

373

Also Available

If you are interested in learning Pandas in a corporate training, please reach out to MetaSnake.
MetaSnake has conducted live and virtual trainings for teams all over the world. See
https:/ / metasnake.com for details.

If you are interested in on-demand training, see https:/ /store.metasnake.com for on-demand
course offerings.

377

https://metasnake.com
https://store.metasnake.com

One more thing

Thank you for buying and reading this book.

If you have found this book helpful, I have a big favor to ask. As a self-published author, I don’t
have a big Publishing House with lots of marketing power pushing my book. I also try to price my
books so that they are much more affordable.

If you enjoyed this book, I hope that you would take a moment to leave an honest review on
Amazon or social media. A short comment on how the book helped you and what your learned
makes a huge difference. A quick review is useful to others who might be interested in the book.

Thanks again!

379

	Introduction
	Who this book is for
	Data in this Book
	Hints, Tables, and Images

	Installation
	Anaconda
	Pip
	Jupyter Overview
	Summary
	Exercises

	Data Structures
	Summary
	Exercises

	Series Introduction
	The index abstraction
	The pandas Series
	The NaN value
	Optional Integer Support for NaN
	Similar to NumPy
	Categorical Data
	Summary
	Exercises

	Series Deep Dive
	Loading the Data
	Series Attributes
	Summary
	Exercises

	Operators (& Dunder Methods)
	Introduction
	Dunder Methods
	Index Alignment
	Broadcasting
	Iteration
	Operator Methods
	Chaining
	Summary
	Exercises

	Aggregate Methods
	Aggregations
	Count and Mean of an Attribute
	.agg and Aggregation Strings
	Summary
	Exercises

	Conversion Methods
	Automatic Conversion
	Memory Usage
	String and Category Types
	Ordered Categories
	Converting to Other Types
	Summary
	Exercises

	Manipulation Methods
	.apply and .where
	If Else with Pandas
	Missing Data
	Filling In Missing Data
	Interpolating Data
	Clipping Data
	Sorting Values
	Sorting the Index
	Dropping Duplicates
	Ranking Data
	Replacing Data
	Binning Data
	Summary
	Exercises

	Indexing Operations
	Prepping the Data and Renaming the Index
	Resetting the Index
	The .loc Attribute
	The .iloc Attribute
	Heads and Tails
	Sampling
	Filtering Index Values
	Reindexing
	Summary
	Exercises

	String Manipulation
	Strings and Objects
	Categorical Strings
	The .str Accessor
	Searching
	Splitting
	Optimizing .apply with Cython
	Replacing Text
	Summary
	Exercises

	Date and Time Manipulation
	Date Theory
	Loading UTC Time Data
	Loading Local Time Data
	Converting Local time to UTC
	Converting to Epochs
	Manipulating Dates
	Summary
	Exercises

	Dates in the Index
	Finding Missing Data
	Filling In Missing Data
	Interpolation
	Dropping Missing Values
	Shifting Data
	Rolling Average
	Resampling
	Gathering Aggregate Values (But Keeping Index)
	Groupby Operations
	Cumulative Operations
	Summary
	Exercises

	Plotting with a Series
	Plotting in Jupyter
	The .plot Attribute
	Histograms
	Box Plot
	Kernel Density Estimation Plot
	Line Plots
	Line Plots with Multiple Aggregations
	Bar Plots
	Pie Plots
	Styling
	Summary
	Exercises

	Categorical Manipulation
	Categorical Data
	Frequency Counts
	Benefits of Categories
	Conversion to Ordinal Categories
	The .cat Accessor
	Category Gotchas
	Generalization
	Summary
	Exercises

	Dataframes
	Database and Spreadsheet Analogues
	A Simple Python Version
	Dataframes
	Construction
	Dataframe Axis
	Summary
	Exercises

	Similarities with Series and DataFrame
	Getting the Data
	Viewing Data
	Summary
	Exercises

	Math Methods in DataFrames
	Index Alignment
	Duplicate Index Entries
	Summary
	Exercises

	Looping and Aggregation
	For Loops
	Aggregations
	The .apply Method
	Summary
	Exercises

	Columns Types, .assign, and Memory Usage
	Conversion Methods
	Memory Usage
	Summary
	Exercises

	Creating and Updating Columns
	Loading the Data
	More Column Cleanup
	Summary
	Exercises

	Dealing with Missing and Duplicated Data
	Missing Data
	Duplicates
	Summary
	Exercises

	Sorting Columns and Indexes
	Sorting Columns
	Sorting Column Order
	Setting and Sorting the Index
	Summary
	Exercises

	Filtering and Indexing Operations
	Renaming an Index
	Resetting the Index
	Dataframe Indexing, Filtering, & Querying
	Indexing by Position
	Indexing by Name
	Filtering with Functions & .loc
	.query vs .loc
	Summary
	Exercises

	Plotting with Dataframes
	Lines Plots
	Bar Plots
	Scatter Plots
	Area Plots and Stacked Bar Plots
	Column Distributions with KDEs, Histograms, and Boxplots
	Summary
	Exercises

	Reshaping Dataframes with Dummies
	Dummy Columns
	Undoing Dummy Columns
	Summary
	Exercises

	Reshaping By Pivoting and Grouping
	A Basic Example
	Using a Custom Aggregation Function
	Multiple Aggregations
	Per Column Aggregations
	Grouping by Hierarchy
	Grouping with Functions
	Summary
	Exercises

	More Aggregations
	Aggregations while Keeping Rows
	Filtering Parts of Groups
	Summary
	Exercises

	Cross-tabulation Deep Dive
	Cross-tabulation Summaries
	Adding Margins
	Normalizing Results
	Hierarchical Columns with Cross Tabulations
	Heatmaps
	Summary
	Exercises

	Melting, Transposing, and Stacking Data
	Melting Data
	Un-melting Data
	Transposing Data
	Stacking & Unstacking
	Stacking
	Flattening Hierarchical Indexes and Columns
	Summary
	Exercises

	Working with Time Series
	Loading the Data
	Adding Timezone Information
	Exploring the Data
	Slicing Time Series
	Missing Timeseries Data
	Exploring Seasonality
	Resampling Data
	Rules with Offset Aliases
	Combining Offset Aliases
	Anchored Offset Aliases
	Resampling to Finer-grain Frequency
	Grouping a Date Column with pd.Grouper
	Summary
	Exercises

	Joining Dataframes
	Adding Rows to Dataframes
	Adding Columns to Dataframes
	Joins
	Join Indicators
	Merge Validation
	Joining Data Example
	Dirty Devil Flow and Weather Data
	Joining Data
	Validating Joined Data
	Visualization of Merged Data
	Summary
	Exercises

	Exporting Data
	Dirty Devil Data
	Reading and Writing
	Creating CSV Files
	Exporting to Excel
	Feather
	SQL
	JSON
	Summary
	Exercises

	Styling Dataframes
	Loading the Data
	Sparklines
	The .style Attribute
	Formatting
	Embedding Bar Plots
	Highlighting
	Heatmaps and Gradients
	Captions
	CSS Properties
	Stickiness and Hiding
	Hiding the Index
	Summary
	Exercises

	Debugging Pandas
	Checking if Dataframes are Equal
	Debugging Chains
	Debugging Chains Part II
	Debugging Chains Part III
	Debugging Chains Part IV
	Debugging Apply (and Friends)
	Memory Usage
	Timing Information
	Summary
	Exercises

	Summary
	About the Author
	Index
	Also Available
	One more thing

